Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
2.
Article in English | MEDLINE | ID: mdl-38635926

ABSTRACT

A method was developed for the determination of tropane alkaloids (TAs), including atropine, scopolamine, anisodamine and homatropine in buckwheat and related products. This work presents an optimised methodology based on QuEChERS (Quick, Easy, Cheap, Effective, Rugged and Safe) extraction procedure followed by ultra-high performance liquid chromatography combined with time-of-flight mass spectrometry for the determination of TAs (atropine, scopolamine, anisodamine and homatropine) in buckwheat samples. The analytical methodology was successfully validated, demonstrating good linearity, low limit of quantification, repeatability (RSDr < 15%), inter-day precision (RSDR < 19%) and recovery (74-113%). Finally, 13 commercial samples of buckwheat were analysed and the results demonstrated that they were in compliance with the current European regulations regarding TAs.


Subject(s)
Fagopyrum , Tropanes , Fagopyrum/chemistry , Chromatography, High Pressure Liquid , Tropanes/analysis , Tropanes/chemistry , Mass Spectrometry , Food Contamination/analysis
4.
Foods ; 13(3)2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38338609

ABSTRACT

In this work, alpha-tocopherol (α-TOC) was encapsulated in poly(lactic acid) nanoparticles (PLA NPs) and added to low-density polyethylene (LDPE) films with the aim of producing an active film for food packaging applications. PLA NPs loaded with α-TOC were produced through nanoprecipitation and dried using two methods (freeze-dryer and oven). LDPE-based films with final polymeric matrix concentrations of 10 and 20 g/kg were then produced through blow extrusion. The results showed that LDPE-based films loaded with α-TOC can be produced using blow extrusion, and a good distribution of PLA NPs can be obtained within the LDPE matrix as observed using scanning electron microscopy (SEM). The mechanical properties were affected by the incorporation of α-TOC and PLA NPs loaded with α-TOC, with the observation of a decrease in tensile strength and Young's Modulus values and an increase in elongation at break. Regarding water vapor permeability, the films showed a reduction in the values with the addition of α-TOC and PLA NPs loaded with α-TOC compared to the LDPE film (control). Films with α-TOC in the free state and loaded in PLA NPs showed antioxidant activity, but their behavior was affected by the encapsulation process.

5.
Toxins (Basel) ; 16(2)2024 02 02.
Article in English | MEDLINE | ID: mdl-38393157

ABSTRACT

Consumers are increasingly seeking natural alternatives to chemical compounds, including the use of dried aromatic plants as seasonings instead of salt. However, the presence of pyrrolizidine alkaloids (PAs) in food supplements and dried plants has become a concern because of their link to liver diseases and their classification as carcinogenic by the International Agency for Research on Cancer (IARC). Despite European Union (EU) Regulation (EU) 2023/915, non-compliance issues persist, as indicated by alerts on the Rapid Alert System for Food and Feed (RASFF) portal. Analyzing PAs poses a challenge because of their diverse chemical structures and low concentrations in these products, necessitating highly sensitive analytical methods. Despite these challenges, ongoing advancements in analytical techniques coupled with effective sampling and extraction strategies offer the potential to enhance safety measures. These developments aim to minimize consumer exposure to PAs and safeguard their health while addressing the growing demand for natural alternatives in the marketplace.


Subject(s)
Pyrrolizidine Alkaloids , Pyrrolizidine Alkaloids/toxicity , Pyrrolizidine Alkaloids/chemistry , Plants/chemistry , Dietary Supplements/toxicity , Dietary Supplements/analysis , Carcinogens
6.
Adv Food Nutr Res ; 107: 41-90, 2023.
Article in English | MEDLINE | ID: mdl-37898542

ABSTRACT

Food by-product valorization has become an important research area for promoting the sustainability of the food chain. Citrus fruits are among the most widely cultivated fruit crops worldwide. Citrus by-products, including pomace, seeds, and peels (flavedo and albedo), are produced in large amounts each year. Those by-products have an important economic value due to the high content on bioactive compounds, namely phenolic compounds and carotenoids, and are considered a valuable bio-resource for potential applications in the food industry. However, green extraction techniques are required to ensure their sustainability. This chapter addresses the main components of citrus by-products and their recent applications in food products and active food packaging, towards a circular economy. In addition, the concern regarding citrus by-products contamination (e.g. with pesticides residues and mycotoxins) is also discussed.


Subject(s)
Citrus , Functional Food , Citrus/chemistry , Carotenoids/analysis , Carotenoids/chemistry , Fruit/chemistry , Antioxidants
7.
Mol Biol Rep ; 50(8): 7069-7088, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37402067

ABSTRACT

INTRODUCTION:  According to the World Health Organization, infertility is a public health problem that affects around 48 million couples and 186 million individuals worldwide. Endocrine disruptors are one of the causes that raise more concern, given that it is a problem that has evolved with the progress of society. Many chemicals are used by food industry, entering food chain, and directly affecting human health. Endocrine disruptors have the capacity of interfering with the normal hormonal action, metabolism, and biosynthesis, which can lead to a variation of the normal hormonal homeostasis. Some of these endocrine disruptors are highly associated with diseases that are positively correlated with female infertility, such as polycystic ovary syndrome, endometriosis, irregular menstrual cycle and also disturbances on processes as steroidogenesis and development of the ovarian follicles. RESULTS: The present literature review covers various aspects of the possible relationship between endocrine disruptors and female infertility. Bisphenol A and its metabolites, phthalates, dioxins, organochlorine, and organophosphate compounds are groups of chemicals considered to have the capacity to disrupt endocrine activity and herein addressed. The results reported in in vivo studies and in clinical trials addressing endocrine disruptors and female infertility were discussed as well as their possible mechanism of action. CONCLUSIONS: Large, double-blind, placebo-controlled randomized clinical trials are needed to better understand the mechanisms of action of endocrine disruptors in female infertility, as well as the doses and frequency of exposure responsible for it.


Subject(s)
Endocrine Disruptors , Endometriosis , Environmental Pollutants , Infertility, Female , Humans , Female , Infertility, Female/chemically induced , Environmental Pollutants/toxicity , Endocrine Disruptors/toxicity , Ovarian Follicle , Randomized Controlled Trials as Topic
8.
Foods ; 12(7)2023 Apr 05.
Article in English | MEDLINE | ID: mdl-37048358

ABSTRACT

Pears (Pyrus communis L.) and apples (Malus domestica Borkh.) are two of the most popular fruits worldwide. The phenolic compounds they offer are associated with human health benefits due to their antioxidant properties. Since these fruits' by-products are not yet fully exploited, it is important to characterize them, especially in terms of their antioxidant properties. The aim of this study was to determine the antioxidant properties of old traditional cultivars, six regional pear cultivars and five regional apple cultivars grown in the Alcobaça region (Portugal). Antioxidant capacity assays were used to evaluate the antioxidant properties. Generally, the antioxidant capacity, total phenolics content (TPC), and total flavonoids content (TFC) of fruit byproducts (both seeds and peels) were higher than the corresponding mesocarp, indicating their potential as sources of beneficial antioxidant compounds. Moreover, a UHPLC-ToF-MS method was optimized and validated in order to quantify 21 distinct phenolics in these fruit samples. The analytical method's suitability for quantifying phenolic compounds was demonstrated by an evaluation of linearity, limit of detection, limit of quantification, precision and accuracy. This method was used to determine the phenolic composition of samples of regional (local) cultivars. The phenolics in the fruit samples with the highest concentrations were phlorizin and chlorogenic acid. Principal component analysis (PCA) was used to separate distinct fruit species while emphasizing their similarities and differences.

9.
Toxins (Basel) ; 15(4)2023 03 27.
Article in English | MEDLINE | ID: mdl-37104183

ABSTRACT

Herbal infusions are highly popular beverages consumed daily due to their health benefits and antioxidant properties. However, the presence of plant toxins, such as tropane alkaloids, constitutes a recent health concern for herbal infusions. This work presents an optimized and validated methodology based on the QuEChERS (Quick, Easy, Cheap, Effective, Rugged, and Safe) extraction procedure followed by Ultra-High Performance Liquid Chromatography combined with Time-of-Flight Mass Spectrometry (UHPLC-ToF-MS) for the determination of tropane alkaloids (atropine, scopolamine, anisodamine, and homatropine) in herbal infusions, in accordance with criteria established by Commission Recommendation EU No. 2015/976. One of the seventeen samples was contaminated with atropine, exceeding the current European regulation regarding tropane alkaloids. In addition, this study evaluated the antioxidant capacity of common herbal infusions available on Portuguese markets, indicating the high antioxidant capacity of yerba mate (Ilex paraguariensis), lemon balm (Melissa officinalis), and peppermint (Mentha x piperita).


Subject(s)
Alkaloids , Antioxidants , Tandem Mass Spectrometry/methods , Tropanes/analysis , Alkaloids/analysis , Atropine , Chromatography, High Pressure Liquid
10.
Crit Rev Food Sci Nutr ; 63(8): 1078-1101, 2023.
Article in English | MEDLINE | ID: mdl-34338575

ABSTRACT

Halophytes are salt-tolerant plants that inhabit environments in which they are exposed to extreme stress, wherefore they exhibit conserved and divergent metabolic responses different from those of conventional plants. Thus, the synthesis and accumulation of metabolites, especially of those oxidative stress-related such as phenolic compounds, should be investigated. The potential of halophytes as a source of phenolics and their prospective industrial applications are evaluated based on a comprehensive review of the scientific literature on the phenolic compounds of more than forty halophytes and their biological activities. Additionally, an overview of the analytical methodologies adopted for phenolics determination in halophytes is provided. Finally, the prospective uses and beneficial effects of the phenolic preparations from these plants are discussed. Halophytes are complex matrices, exhibiting a wide variety of phenolics in their composition, wherefore the results can be greatly affected depending on the organ plant under analysis and the extraction methodology, especially the extraction solvent used. High-performance liquid chromatography, coupled with diode array detection (HPLC-DAD) or mass spectrometry (HPLC-MS), are the most used technique. Halophytes biosynthesize phenolics in concentrations that justify the remarkable antioxidant and antimicrobial activities shown, making them ideal sources of bioactive molecules to be employed in a multitude of sectors.


Subject(s)
Phenols , Salt-Tolerant Plants , Salt-Tolerant Plants/chemistry , Salt-Tolerant Plants/metabolism , Phenols/analysis , Chromatography, High Pressure Liquid , Antioxidants/pharmacology , Plant Extracts/chemistry
11.
Crit Rev Food Sci Nutr ; 63(27): 8672-8697, 2023.
Article in English | MEDLINE | ID: mdl-35452322

ABSTRACT

ABSTRACTSTea (Camellia sinensis L.) is a high valued beverage worldwide since ancient times; more than three billion cups of tea are consumed each day. Leaf extracts of the plant are used for food preservation, cosmetics, and medicinal purposes. Nevertheless, tea contaminated with mycotoxins poses a serious health threat to humans. Mycotoxin production by tea fungi is induced by a variety of factors, including poor processing methods and environmental factors such as high temperature and humidity. This review summarizes the studies published to date on mycotoxin prevalence, toxicity, the effects of climate change on mycotoxin production, and the methods used to detect and decontaminate tea mycotoxins. While many investigations in this domain have been carried out on the prevalence of aflatoxins and ochratoxins in black, green, pu-erh, and herbal teas, much less information is available on zearalenone, fumonisins, and Alternaria toxins. Mycotoxins in teas were detected using several methods; the most commonly used being the High-Performance Liquid Chromatography (HPLC) with fluorescence detection, followed by HPLC with tandem mass spectrometry, gas chromatography and enzyme-linked immunosorbent assay. Further, mycotoxins decontamination methods for teas included physical, chemical, and biological methods, with physical methods being most prevalent. Finally, research gaps and future directions have also been discussed.


Subject(s)
Camellia sinensis , Mycotoxins , Ochratoxins , Humans , Mycotoxins/analysis , Tea/chemistry , Beverages/analysis , Fungi , Camellia sinensis/chemistry , Chromatography, High Pressure Liquid
12.
Crit Rev Biotechnol ; 43(8): 1257-1283, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36130809

ABSTRACT

Food commodities are often contaminated by microbial pathogens in transit or during storage. Hence, mitigation of these pathogens is necessary to ensure the safety of food commodities. Globally, researchers used botanicals as natural additives to preserve food commodities from bio-deterioration, and advances were made to meet users' acceptance in this domain, as synthetic preservatives are associated with harmful effects to both consumers and environments. Over the last century, the genus Curcuma has been used in traditional medicine, and its crude and nanoencapsulated essential oils (EOs) and curcuminoids were used to combat harmful pathogens that deteriorate stored foods. Today, more research is needed for solving the problem of pathogen resistance in food commodities and to meet consumer demands. Therefore, Curcuma-based botanicals may provide a source of natural preservatives for food commodities that satisfy the needs both of the food industry and the consumers. Hence, this article discusses the antimicrobial and antioxidant properties of EOs and curcuminoids derived from the genus Curcuma. Further, the action modes of Curcuma-based botanicals are explained, and the latest advances in nanoencapsulation of these compounds in food systems are discussed alongside knowledge gaps and safety assessment where the focus of future research should be placed.


Subject(s)
Anti-Infective Agents , Oils, Volatile , Food Additives , Curcuma , Anti-Infective Agents/pharmacology , Diarylheptanoids
13.
Molecules ; 27(23)2022 Dec 05.
Article in English | MEDLINE | ID: mdl-36500649

ABSTRACT

Lupinus albus L. (lupine) is a legume whose grain/seed has gained increasing interest. Its recognized nutritional properties, namely a high content of protein, dietary fiber and its low fat content, make lupine a suitable alternative not only for animal protein, but also as a substitute for more processed and less balanced flours from a nutritional point of view, used in the preparation of bread, cakes and cookies, among others. In addition, its nutritional and bioactive compounds have potential benefits for human health in the prevention and treatment of some diseases. However, the existence of some anti-nutritional compounds and contaminants reveal some concern, requiring effective methods for their detection and eventual removal. This review intends to address the potential of lupine (L. albus) in food and human health and to balance the pros and cons. Nutritional and anti-nutritional components of L. albus seeds and possible contaminants of lupine seeds are examined. The potential health benefits of lupine (seeds), including energy metabolism, cardiovascular diseases, hypertension, glucose and insulin metabolism, bower function and anticonvulsant action, are discussed based on scientific evidence (both clinical trials and studies performed with animal models).


Subject(s)
Lupinus , Animals , Humans , Seeds , Flour/analysis , Bread , Dietary Fiber , Allergens , Vegetables
14.
Toxins (Basel) ; 14(9)2022 09 19.
Article in English | MEDLINE | ID: mdl-36136585

ABSTRACT

The prevalence of mycotoxins in the environment is associated with potential crop contamination, which results in an unavoidable increase in human exposure. Rice, being the second most consumed cereal worldwide, constitutes an important source of potential contamination by mycotoxins. Due to the increasing number of notifications reported, and the occurrence of mycotoxins at levels above the legislated limits, this work intends to compile the most relevant studies and review the main methods used in the detection and quantification of these compounds in rice. The aflatoxins and ochratoxin A are the predominant mycotoxins detected in rice grain and these data reveal the importance of adopting safety storage practices that prevent the growth of producing fungi from the Aspergillus genus along all the rice chain. Immunoaffinity columns (IAC) and QuECHERS are the preferred methods for extraction and purification and HPLC-MS/MS is preferred for quantification purposes. Further investigation is still required to establish the real exposition of these contaminants, as well as the consequences and possible synergistic effects due to the co-occurrence of mycotoxins and also for emergent and masked mycotoxins.


Subject(s)
Aflatoxins , Mycotoxins , Oryza , Aflatoxins/analysis , Edible Grain/chemistry , Food Contamination/analysis , Humans , Masked Mycotoxins , Mycotoxins/analysis , Oryza/microbiology , Tandem Mass Spectrometry
15.
Foods ; 11(8)2022 Apr 16.
Article in English | MEDLINE | ID: mdl-35454745

ABSTRACT

Fresh cheese composition favors the growth of microorganisms and lipid oxidation, leading to a short shelf life. Whey protein concentrates can be used to produce active films in which green tea (Camellia sinensis L.) extract, rich in bioactive compounds, namely catechins, can be incorporated. Thus, the main objective of this study was to evaluate the efficacy of an edible active film, incorporated with green tea extract, to preserve goat and mixture (goat and sheep) fresh cheeses. Our results demonstrated that Portuguese green teas (antioxidant activity coefficient-AAC = 746.7) had superior antioxidant capacity to that of the evaluated Asian green tea (AAC = 650). Furthermore, green tea produced from the leaves of the new Portuguese Chá Camélia tea plantation had the highest potential to retain the antioxidant capacity (97.3%). Additionally, solid-liquid extractions led to extracts with higher antioxidant activity (AAC = 1500), but Soxhlet extractions presented higher yield (43%). Furthermore, the active film incorporated with Portuguese green tea extract exhibited a high antioxidant capacity (AAC ≈ 595.4). In addition, the active film effectively delayed the lipid oxidation of the evaluated fresh cheeses (3.2 mg MDA Eq/kg) when compared with the control (4.2 mg MDA Eq/kg). Moreover, the active films effectively inhibited the growth of microorganisms, especially E. coli (1.5 × 10 CFU/g), when compared with the blank (2.2 × 102 CFU/g). This study suggests that the new whey protein film incorporated with Portuguese green tea extract has the potential to be used to extend fresh cheese shelf life.

16.
Curr Top Med Chem ; 22(11): 957-972, 2022.
Article in English | MEDLINE | ID: mdl-34749610

ABSTRACT

The current review discuss the chemistry, nutritional composition, toxicity, and biological functions of garlic and its bioactive compounds against various types of cancers via different anticancer mechanisms. Several scientific documents were found in reliable literature and searched in databases viz Science Direct, PubMed, Web of Science, Scopus, and Research Gate were carried out using keywords such as "garlic", "garlic bioactive compounds", "anticancer mechanisms of garlic", "nutritional composition of garlic", and others. Garlic contains several phytoconstituents with activities against cancer, and compounds such as diallyl trisulfide (DATS), allicin, and diallyl disulfide (DADS), diallyl sulfide (DAS), and allyl mercaptan (AM). The influence of numerous garlic- derived products, phytochemicals, and nanoformulations on the liver, oral, prostate, breast, gastric, colorectal, skin, and pancreatic cancers has been studied. Based on our search, the bioactive molecules in garlic were found to inhibit the various phases of cancer. Moreover, the compounds in this plant also abrogate the peroxidation of lipids, activity of nitric oxide synthase, epidermal growth factor (EGF) receptor, nuclear factor-kappa B (NF-κB), protein kinase C, and regulate cell cycle and survival signaling cascades. Hence, garlic and its bioactive molecules exhibit the aforementioned mechanistic actions, and thus, they could be used to inhibit the induction, development, and progression of cancer. The review describes the nutritional composition of garlic, its bioactive molecules, and nanoformulations against various types of cancers, as well as the potential for developing these agents as antitumor drugs.


Subject(s)
Antineoplastic Agents , Biological Products , Garlic , Antineoplastic Agents/pharmacology , Antioxidants , Disulfides/pharmacology , Garlic/chemistry , Sulfides/chemistry
17.
Toxins (Basel) ; 13(10)2021 09 25.
Article in English | MEDLINE | ID: mdl-34678975

ABSTRACT

The consumption of pistachios (Pistacia vera L.) has been increasing, given their important benefit to human health. In addition to being an excellent nutritional source, they have been associated with chemical hazards, such as mycotoxins, resulting in fungal contamination and its secondary metabolism. Aflatoxins (AFs) are the most common mycotoxins in pistachio and the most toxic to humans, with hepatotoxic effects. More mycotoxins such as ochratoxin A (OTA), fumonisins (FBs), zearalenone (ZEA) and trichothecenes (T2, HT2 and DON) and emerging mycotoxins have been involved in nuts. Because of the low levels of concentration and the complexity of the matrix, the determination techniques must be very sensitive. The present paper carries out an extensive review of the state of the art of the determination of mycotoxins in pistachios, concerning the trends in analytical methodologies for their determination and the levels detected as a result of its contamination. Screening methods based on immunoassays are useful due to their simplicity and rapid response. Liquid chromatography (LC) is the gold standard with new improvements to enhance accuracy, precision and sensitivity and a lower detection limit. The reduction of Aspergillus' and aflatoxins' contamination is important to minimize the public health risks. While prevention, mostly in pre-harvest, is the most effective and preferable measure to avoid mycotoxin contamination, there is an increased number of decontamination processes which will also be addressed in this review.


Subject(s)
Food Contamination/analysis , Mycotoxins/analysis , Pistacia/chemistry , Chromatography/methods , Food Contamination/prevention & control , Immunoassay/methods , Nuts/chemistry
18.
Prev Vet Med ; 190: 105325, 2021 May.
Article in English | MEDLINE | ID: mdl-33744675

ABSTRACT

Chitosan is a natural polysaccharide with biocompatibility, biodegradability, nontoxicity, antimicrobial, and hemostatic properties. This biopolymer has been used in different pharmaceutical forms; therefore, it has an attractive potential for dermal applications in veterinary medicine. The aim of this review is to assess the healing potential of chitosan, based on its dermatological effects on animals, to enrich the therapeutic options of veterinary clinicians. A systematic review was conducted based on the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) strategy, retrieving 1,032 studies and selecting 39 after the inclusion and exclusion criteria were applied. The studies included reports with confirmed positive effects (n = 46/99, 46.5 %) (P < 0.05), with positive effects (n = 49.5/99, 49.5 %), and with no effect (n = 4/99, 4 %); none of the studies reported adverse effects. There is an association between frequency of application and a decrease in healing time (P = 0.038); applying chitosan "every 48-72 hours" was the most recommended frequency (n = 10/19, 52.9 %). Chitosan, when applied to skin lesions on animals, produces positive effects on healing, potentially becoming a safe biomaterial for skin treatments in veterinary practice. As an initial protocol, we suggest applying chitosan every 48-72 hours for at least 2 weeks (7 applications).


Subject(s)
Chitosan , Dermatology , Animals , Biocompatible Materials , Chitosan/therapeutic use , Veterinary Medicine
19.
J Tradit Complement Med ; 11(2): 130-136, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33728273

ABSTRACT

BACKGROUND AND AIM: Honey has been recognized worldwide for its antioxidant, anti-tumor, anti-inflammatory and antimicrobial properties. Among them, the antifungal properties associated to honey make it an attractive alternative treatment for Candida-associated infections, particularly for topical application to the mucous membranes and skin. In this sense, the main purpose of this work was to evaluate physicochemical properties of five Portuguese honeys and Manuka honey (an Australian honey with well recognized medical proprieties, used as control) and to evaluate the antifungal activity in Candida species planktonic and biofilm assays. EXPERIMENTAL PROCEDURE: Pollen analysis, pH determination, color, concentration of protein and methylglyoxal, conductivity, total phenolics and flavonoids, hydrogen peroxide concentration, and characterization by differential scanning calorimetry in honey samples were determined. Additionally, the effect of honeys on planktonic growth of Candida was initially evaluated by determination of the minimum inhibitory concentrations. Then, the same effect of those honeys was evaluated in biofilms, by Colony Forming Units enumeration. RESULTS AND CONCLUSION: It has been shown that Portuguese heather (Erica cinereal) honey presented the most similar physicochemical properties to manuka honey (specially phenolic and flavonoids contents). The five Portuguese honeys under study, presented in general a potent activity against planktonic multi-resistant yeast pathogens (several clinical isolates and reference strains of Candida species) and S. aureus and P. aeruginosa bacteria cultures. Additionally, it was also concluded that Portuguese heather honey (50% and 75% (w/v)) can also act as a good Candida species biofilm reducer, namely for C. tropicalis.

20.
Curr Mol Pharmacol ; 14(6): 925-934, 2021.
Article in English | MEDLINE | ID: mdl-33430757

ABSTRACT

BACKGROUND: The pseudo-cereal quinoa has attracted worldwide attention in recent years, due to it being considered a functional food. This stress-tolerant crop has historically been used by Andean cultures as a staple food. Nowadays, the consumption of quinoa in high-income countries is increasing due to it being associated with numerous health benefits, namely related to cardiovascular health. OBJECTIVE: We have carried out an extensive review on quinoa, including its main uses, applications, and components (nutrients, antinutrients, and bioactives) and their relationship with biological activities and cardiovascular health. Key findings and Conclusions: Quinoa possesses numerous activities, including protection against cardiovascular, metabolic, and degenerative diseases, improvement of the immune system, reduction of symptoms associated with post-menopause, and promotion of muscle mass increase. Some of the quinoa's activities are due to its balanced amino acid profile, high fiber content, presence of phosphorus, iron, potassium, magnesium, vitamin E, and B vitamins. A plethora of bioactives can also be found in quinoa, such as phytosterols, saponins, phenolics, bioactive peptides, and phytoecdysteroids. More research is needed to better understand the mechanisms of action involved in the biological/therapeutic action of some quinoa components, namely those related to the potential to reduce cardiovascular disease (CVD) risk markers. The knowledge of factors that affect quinoa variability, such as processing conditions, is also of great importance for being able to obtain more benefits from this crop.


Subject(s)
Cardiovascular Diseases , Chenopodium quinoa , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/prevention & control , Chenopodium quinoa/chemistry , Chenopodium quinoa/metabolism , Nutritive Value , Phenols
SELECTION OF CITATIONS
SEARCH DETAIL
...