Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 189
Filter
1.
C R Biol ; 346(S2): 69-74, 2024 03 29.
Article in French | MEDLINE | ID: mdl-38231390

ABSTRACT

Sixty years elapsed between the discovery of messenger RNA (mRNA) and the use of this molecule in an unprecedented global vaccination campaign that brought the Covid-19 pandemic under control. Sixty years of doubts for some and certainties for others about the possibility of using mRNA-an example of synthetic biology-in therapeutic medicine and vaccinology. Years of "translational" research and development have culminated in the success of anti-Covid-19 mRNA vaccines and the promise of more to come against emerging pathogens. A new paradigm in vaccinology, enabling pandemics to be tackled as they emerge. A lesson to be learned: medical progress is less a question of time than of the critical nature of the biological discovery that underpins it. Before leaving us, François Gros, who played a key role in the discovery of mRNA, was able to appreciate the relevance of this obvious fact.


Soixante ans ont séparé la découverte de l'ARN messager (ARNm) et l'utilisation de cette molécule dans une campagne planétaire inédite de vaccination ayant permis le contrôle de la pandémie de Covid-19. Soixante ans de doutes chez certains et de certitudes chez d'autres sur la possibilité d'utiliser l'ARNm ­ un exemple de biologie de synthèse ­ en médecine thérapeutique et en vaccinologie. Des années de recherche et de développement «  translationnels  ¼ pour aboutir au succès de vaccins à ARNm anti-Covid-19 et à la promesse d'autres à venir contre de nouveaux pathogènes émergents. Un nouveau paradigme de la vaccinologie permettant d'attaquer les pandémies dans le temps de leur émergence. Une leçon à tirer, le progrès médical est moins affaire de temps que de la nature décisive de la découverte biologique qui le sous-tend. François Gros, acteur de la découverte de l'ARNm a pu, avant de nous quitter, juger de la pertinence de cette évidence.


Subject(s)
COVID-19 , Pandemics , Humans , Pandemics/prevention & control , COVID-19/prevention & control , RNA, Messenger/genetics , Vaccination , Biology
2.
Gut Microbes ; 15(2): 2271597, 2023 12.
Article in English | MEDLINE | ID: mdl-37876025

ABSTRACT

Shigella spp. are the causative agents of bacterial dysentery and shigellosis, mainly in children living in developing countries. The study of Shigella entire life cycle in vivo and the evaluation of vaccine candidates' protective efficacy have been hampered by the lack of a suitable animal model of infection. None of the studies evaluated so far (rabbit, guinea pig, mouse) allowed the recapitulation of full shigellosis symptoms upon Shigella oral challenge. Historical reports have suggested that dysentery and scurvy are both metabolic diseases associated with ascorbate deficiency. Mammals, which are susceptible to Shigella infection (humans, non-human primates and guinea pigs) are among the few species unable to synthesize ascorbate. We optimized a low-ascorbate diet to induce moderate ascorbate deficiency, but not scurvy, in guinea pigs to investigate whether poor vitamin C status increases the progression of shigellosis. Moderate ascorbate deficiency increased shigellosis symptom severity during an extended period of time (up to 48 h) in all strains tested (Shigella sonnei, Shigella flexneri 5a, and 2a). At late time points, an important influx of neutrophils was observed both within the disrupted colonic mucosa and in the luminal compartment, although Shigella was able to disseminate deep into the organ to reach the sub-mucosal layer and the bloodstream. Moreover, we found that ascorbate deficiency also increased Shigella penetration into the colon epithelium layer in a Gulo-/- mouse infection model. The use of these new rodent models of shigellosis opens new doors for the study of both Shigella infection strategies and immune responses to Shigella infection.


Subject(s)
Dysentery, Bacillary , Gastrointestinal Microbiome , Shigella , Guinea Pigs , Humans , Animals , Rabbits , Mice , Dysentery, Bacillary/microbiology , Disease Models, Animal , Shigella flexneri , Ascorbic Acid , Mammals
3.
Gut Microbes ; 15(2): 2265138, 2023 12.
Article in English | MEDLINE | ID: mdl-37842920

ABSTRACT

Recently, an intestinal dysbiotic microbiota with enrichment in oral cavity bacteria has been described in colorectal cancer (CRC) patients. Here, we characterize and investigate one of these oral pathobionts, the Gram-positive anaerobic coccus Parvimonas micra. We identified two phylotypes (A and B) exhibiting different phenotypes and adhesion capabilities. We observed a strong association of phylotype A with CRC, with its higher abundance in feces and in tumoral tissue compared with the normal homologous colonic mucosa, which was associated with a distinct methylation status of patients. By developing an in vitro hypoxic co-culture system of human primary colonic cells with anaerobic bacteria, we show that P. micra phylotype A alters the DNA methylation profile promoters of key tumor-suppressor genes, oncogenes, and genes involved in epithelial-mesenchymal transition. In colonic mucosa of CRC patients carrying P. micra phylotype A, we found similar DNA methylation alterations, together with significant enrichment of differentially expressed genes in pathways involved in inflammation, cell adhesion, and regulation of actin cytoskeleton, providing evidence of P. micra's possible role in the carcinogenic process.


Subject(s)
Colorectal Neoplasms , Gastrointestinal Microbiome , Humans , Gastrointestinal Microbiome/genetics , Firmicutes/genetics , Bacteria , Colorectal Neoplasms/genetics , Colorectal Neoplasms/microbiology
4.
Biosci Rep ; 43(9)2023 09 27.
Article in English | MEDLINE | ID: mdl-37669144

ABSTRACT

Gut microbiota plays a key role in the regulation of metabolism and immunity. We investigated the profile of gut microbiota and the impact of dietary intake on gut bacterial distribution in diabetic and healthy Tunisian subjects, aiming to identify a dysbiotic condition, hence opening the way to restore eubiosis and facilitate return to health. In the present research, we enrolled 10 type 1 diabetic (T1D), 10 type 2 diabetic (T2D) patients and 13 healthy (H) subjects. Illumina Miseq technology was used to sequence V3-V4 hypervariable regions of bacterial 16SrRNA gene. Data were analyzed referring to QIIME 2 pipeline. RStudio software was used to explore the role of nutrition in gut bacterial distribution. At the phylum level, we identified an imbalanced gut microbiota composition in diabetic patients marked by a decrease in the proportion of Firmicutes and an increase in the abundance of Bacteroidetes compared with H subjects. We observed higher amounts of Fusobacteria and a decline in the levels of TM7 phyla in T1D patients compared with H subjects. However, we revealed a decrease in the proportions of Verrucomicrobia in T2D patients compared with H subjects. At the genus level, T2D subjects were more affected by gut microbiota alteration, showing a reduction in the relative abundance of Faecalibacterium, Akkermansia, Clostridium, Blautia and Oscillibacter, whereas T1D group shows a decrease in the proportion of Blautia. The gut bacteria distribution was mainly affected by fats and carbohydrates consumption. Gut microbiota composition was altered in Tunisian diabetic patients and affected by dietary habits.


Subject(s)
Diabetes Mellitus, Type 1 , Diabetes Mellitus, Type 2 , Gastrointestinal Microbiome , Humans , Nutritional Status , Gastrointestinal Microbiome/genetics , Bacteria/genetics
5.
Microlife ; 4: uqad033, 2023.
Article in English | MEDLINE | ID: mdl-37680753

ABSTRACT

Eukaryotes have historically been studied as parasites, but recent evidence suggests they may be indicators of a healthy gut ecosystem. Here, we describe the eukaryome along the gastrointestinal tract of children aged 2-5 years and test for associations with clinical factors such as anaemia, intestinal inflammation, chronic undernutrition, and age. Children were enrolled from December 2016 to May 2018 in Bangui, Central African Republic and Antananarivo, Madagascar. We analyzed a total of 1104 samples representing 212 gastric, 187 duodenal, and 705 fecal samples using a metabarcoding approach targeting the full ITS2 region for fungi, and the V4 hypervariable region of the 18S rRNA gene for the overall eukaryome. Roughly, half of all fecal samples showed microeukaryotic reads. We find high intersubject variability, only a handful of taxa that are likely residents of the gastrointestinal tract, and frequent co-occurrence of eukaryotes within an individual. We also find that the eukaryome differs between the stomach, duodenum, and feces and is strongly influenced by country of origin. Our data show trends towards higher levels of Fusarium equiseti, a mycotoxin producing fungus, and lower levels of the protist Blastocystis in stunted children compared to nonstunted controls. Overall, the eukaryome is poorly correlated with clinical variables. Our study is of one of the largest cohorts analyzing the human intestinal eukaryome to date and the first to compare the eukaryome across different compartments of the gastrointestinal tract. Our results highlight the importance of studying populations across the world to uncover common features of the eukaryome in health.

6.
Front Nutr ; 9: 1033005, 2022.
Article in English | MEDLINE | ID: mdl-36466422

ABSTRACT

The African region encompasses the highest undernutrition burden with the highest neonatal and infant mortality rates globally. Under these circumstances, breastfeeding is one of the most effective ways to ensure child health and development. However, evidence on human milk (HM) composition from African women is scarce. This is of special concern, as we have no reference data from HM composition in the context of food insecurity in Africa. Furthermore, data on the evolution of HM across lactational stages in this setting lack as well. In the MITICA study, we conducted a cohort study among 48 Central-African women and their 50 infants to analyze the emergence of gut dysbiosis in infants and describe the mother-infant transmission of microbiota between birth and 6 months of age. In this context, we assessed nutritional components in HM of 48 lactating women in Central Africa through five sampling times from week 1 after birth until week 25. Unexpectedly, HM-type III (Secretor + and Lewis genes -) was predominant in HM from Central African women, and some nutrients differed significantly among HM-types. While lactose concentration increased across lactation periods, fatty acid concentration did not vary significantly. The overall median level of 16 detected individual human milk oligosaccharides (HMOs; core structures as well as fucosylated and sialylated ones) decreased from 7.3 g/l at week 1 to 3.5 g/l at week 25. The median levels of total amino acids in HM dropped from 12.8 mg/ml at week 1 to 7.4 mg/ml at week 25. In contrast, specific free amino acids increased between months 1 and 3 of lactation, e.g., free glutamic acid, glutamine, aspartic acid, and serine. In conclusion, HM-type distribution and certain nutrients differed from Western mother HM.

7.
Proc Natl Acad Sci U S A ; 119(41): e2209589119, 2022 10 11.
Article in English | MEDLINE | ID: mdl-36197997

ABSTRACT

Environmental enteric dysfunction (EED) is an inflammatory syndrome postulated to contribute to stunted child growth and to be associated with intestinal dysbiosis and nutrient malabsorption. However, the small intestinal contributions to EED remain poorly understood. This study aimed to assess changes in the proximal and distal intestinal microbiota in the context of stunting and EED and to test for a causal role of these bacterial isolates in the underlying pathophysiology. We performed a cross-sectional study in two African countries recruiting roughly 1,000 children aged 2 to 5 years and assessed the microbiota in the stomach, duodenum, and feces. Upper gastrointestinal samples were obtained from stunted children and stratified according to stunting severity. Fecal samples were collected. We then investigated the role of clinical isolates in EED pathophysiology using tissue culture and animal models. We find that small intestinal bacterial overgrowth (SIBO) is extremely common (>80%) in stunted children. SIBO is frequently characterized by an overgrowth of oral bacteria, leading to increased permeability and inflammation and to replacement of classical small intestinal strains. These duodenal bacterial isolates decrease lipid absorption in both cultured enterocytes and mice, providing a mechanism by which they may exacerbate EED and stunting. Further, we find a specific fecal signature associated with the EED markers fecal calprotectin and alpha-antitrypsin. Our study shows a causal implication of ectopic colonization of oral bacterial isolated from the small intestine in nutrient malabsorption and gut leakiness in vitro. These findings have important therapeutic implications for modulating the microbiota through microbiota-targeted interventions.


Subject(s)
Gastrointestinal Microbiome , Growth Disorders , Intestine, Small , Lipids , Mouth , Animals , Bacteria , Child, Preschool , Cross-Sectional Studies , Growth Disorders/etiology , Humans , Leukocyte L1 Antigen Complex , Lipid Metabolism , Malabsorption Syndromes , Mice , Models, Theoretical , Mouth/microbiology
8.
Nutrients ; 14(19)2022 Sep 27.
Article in English | MEDLINE | ID: mdl-36235668

ABSTRACT

Although the World Health Organization (WHO) and UNICEF recommend that infants should be exclusively breastfed for the first 6 months of life, evidence is scarce on how the mother's undernourishment status at delivery and maternal dietary factors influence human milk (HM) composition during the first 6 months of life in regions with high food insecurity. The maternal undernourishment status at delivery, maternal diet, and HM nutrients were assessed among 46 women and their 48 vaginally born infants in Bangui at 1, 4, 11, 18, and 25 weeks after birth through 24-h recalls and food consumption questionnaires from December 2017 to June 2019 in the context of the "Mother-to-Infant TransmIssion of microbiota in Central-Africa" (MITICA) study. High food insecurity indexes during the follow-up were significantly associated with them having lower levels of many of the human milk oligosaccharides (HMOs) that were measured and with lower levels of retinol (aß-coef = −0.2, p value = 0.04), fatty acids (aß-coef = −7.2, p value = 0.03), and amino acids (aß-coef = −2121.0, p value < 0.001). On the contrary, women from food-insecure households displayed significantly higher levels of lactose in their HM (aß-coef = 3.3, p value = 0.02). In parallel, the consumption of meat, poultry, and fish was associated with higher HM levels of many of the HMOs that were measured, total amino acids (aß-coef = 5484.4, p value < 0.001), and with lower HM levels of lactose (aß-coef = −15.6, p value = 0.01). Food insecurity and maternal diet had a meaningful effect on HM composition with a possible impact being an infant undernourishment risk. Our results plead for consistent actions on food security as an effective manner to influence the nutritional content of HM and thereby, potentially improve infant survival and healthy growth.


Subject(s)
Lactose , Milk, Human , Female , Humans , Infant , Amino Acids/metabolism , Breast Feeding , Central African Republic , Diet , Fatty Acids/metabolism , Food Insecurity , Lactose/analysis , Milk, Human/chemistry , Oligosaccharides/analysis , Vitamin A/metabolism
9.
Nutrients ; 14(16)2022 Aug 12.
Article in English | MEDLINE | ID: mdl-36014817

ABSTRACT

Environmental enteric dysfunction (EED) is an elusive, inflammatory syndrome of the small intestine thought to be associated with enterocyte loss and gut leakiness and lead to stunted child growth. To date, the gold standard for diagnosis is small intestine biopsy followed by histology. Several putative biomarkers for EED have been proposed and are widely used in the field. Here, we assessed in a cross-sectional study of children aged 2-5 years for a large set of biomarkers including markers of protein exudation (duodenal and fecal alpha-1-antitrypsin (AAT)), inflammation (duodenal and fecal calprotectin, duodenal, fecal and blood immunoglobulins, blood cytokines, C-reactive protein (CRP)), gut permeability (endocab, lactulose-mannitol ratio), enterocyte mass (citrulline) and general nutritional status (branched-chain amino acids (BCAA), insulin-like growth factor) in a group of 804 children in two Sub-Saharan countries. We correlated these markers with each other and with anemia in stunted and non-stunted children. AAT and calprotectin, CRP and citrulline and citrulline and BCAA correlated with each other. Furthermore, BCAA, citrulline, ferritin, fecal calprotectin and CRP levels were correlated with hemoglobin levels. Our results show that while several of the biomarkers are associated with anemia, there is little correlation between the different biomarkers. Better biomarkers and a better definition of EED are thus urgently needed.


Subject(s)
Biomarkers , Environmental Illness , Intestinal Diseases , Intestine, Small , Africa South of the Sahara , Biomarkers/analysis , Biomarkers/metabolism , C-Reactive Protein/metabolism , Child, Preschool , Citrulline/analysis , Cross-Sectional Studies , Environmental Illness/diagnosis , Environmental Illness/metabolism , Growth Disorders , Humans , Intestinal Diseases/diagnosis , Intestinal Diseases/etiology , Intestinal Diseases/metabolism , Intestine, Small/metabolism , Intestine, Small/pathology , Leukocyte L1 Antigen Complex
10.
Front Immunol ; 13: 864084, 2022.
Article in English | MEDLINE | ID: mdl-35720335

ABSTRACT

Stunting and environmental enteric dysfunction (EED) may be responsible for altered gut and systemic immune responses. However, their impact on circulating immune cell populations remains poorly characterized during early life. A detailed flow cytometry analysis of major systemic immune cell populations in 53 stunted and 52 non-stunted (2 to 5 years old) children living in Antananarivo (Madagascar) was performed. Compared to age-matched non-stunted controls, stunted children aged 2-3 years old had a significantly lower relative proportion of classical monocytes. No significant associations were found between stunting and the percentages of effector T helper cell populations (Th1, Th2, Th17, Th1Th17, and cTfh). However, we found that HLA-DR expression (MFI) on all memory CD4+ or CD8+ T cell subsets was significantly lower in stunted children compared to non-stunted controls. Interestingly, in stunted children compared to the same age-matched non-stunted controls, we observed statistically significant age-specific differences in regulatory T cells (Treg) subsets. Indeed, in 2- to 3-year-old stunted children, a significantly higher percentage of memory Treg, whilst a significantly lower percentage of naive Treg, was found. Our results revealed that both innate and adaptive systemic cell percentages, as well as activation status, were impacted in an age-related manner during stunting. Our study provides valuable insights into the understanding of systemic immune system changes in stunted children.


Subject(s)
Monocytes , T-Lymphocytes, Regulatory , Child , Child, Preschool , Growth Disorders , Humans , T-Lymphocyte Subsets , Th17 Cells
11.
PLoS Negl Trop Dis ; 16(5): e0009849, 2022 05.
Article in English | MEDLINE | ID: mdl-35533199

ABSTRACT

Environmental Enteric Dysfunction (EED) refers to an incompletely defined syndrome of inflammation, reduced absorptive capacity, and reduced barrier function in the small intestine. It is widespread among children and adults in low- and middle-income countries and is also associated with poor sanitation and certain gut infections possibly resulting in an abnormal gut microbiota, small intestinal bacterial overgrowth (SIBO) and stunting. We investigated bacterial pathogen exposure in stunted and non-stunted children in Antananarivo, Madagascar by collecting fecal samples from 464 children (96 severely stunted, 104 moderately stunted and 264 non-stunted) and the prevalence of SIBO in 109 duodenal aspirates from stunted children (61 from severely stunted and 48 from moderately stunted children). SIBO assessed by both aerobic and anaerobic plating techniques was very high: 85.3% when selecting a threshold of ≥105 CFU/ml of bacteria in the upper intestinal aspirates. Moreover, 58.7% of the children showed more than 106 bacteria/ml in these aspirates. The most prevalent cultivated genera recovered were Streptococcus, Neisseria, Staphylococcus, Rothia, Haemophilus, Pantoea and Branhamella. Feces screening by qPCR showed a high prevalence of bacterial enteropathogens, especially those categorized as being enteroinvasive or causing mucosal disruption, such as Shigella spp., enterotoxigenic Escherichia coli, enteropathogenic E. coli and enteroaggregative E. coli. These pathogens were detected at a similar rate in stunted children and controls, all showing no sign of severe diarrhea the day of inclusion but both living in a highly contaminated environment (slum-dwelling). Interestingly Shigella spp. was the most prevalent enteropathogen found in this study (83.3%) without overrepresentation in stunted children.


Subject(s)
Bacterial Infections , Shigella , Adult , Bacteria/genetics , Child , Diarrhea , Escherichia coli , Feces/microbiology , Humans , Intestine, Small , Madagascar/epidemiology , Prevalence
12.
ACS Cent Sci ; 8(4): 449-460, 2022 Apr 27.
Article in English | MEDLINE | ID: mdl-35559427

ABSTRACT

Shigella, the causative agent of shigellosis, is among the main causes of diarrheal diseases with still a high morbidity in low-income countries. Relying on chemical synthesis, we implemented a multidisciplinary strategy to design SF2a-TT15, an original glycoconjugate vaccine candidate targeting Shigella flexneri 2a (SF2a). Whereas the SF2a O-antigen features nonstoichiometric O-acetylation, SF2a-TT15 is made of a synthetic 15mer oligosaccharide, corresponding to three non-O-acetylated repeats, linked at its reducing end to tetanus toxoid by means of a thiol-maleimide spacer. We report on the scale-up feasibility under GMP conditions of a high yielding bioconjugation process established to ensure a reproducible and controllable glycan/protein ratio. Preclinical and clinical batches complying with specifications from ICH guidelines, WHO recommendations for polysaccharide conjugate vaccines, and (non)compendial tests were produced. The obtained SF2a-TT15 vaccine candidate passed all toxicity-related criteria, was immunogenic in rabbits, and elicited bactericidal antibodies in mice. Remarkably, the induced IgG antibodies recognized a large panel of SF2a circulating strains. These preclinical data have paved the way forward to the first-in-human study for SF2a-TT15, demonstrating safety and immunogenicity. This contribution discloses the yet unreported feasibility of the GMP synthesis of conjugate vaccines featuring a unique homogeneous synthetic glycan hapten fine-tuned to protect against an infectious disease.

13.
EMBO Mol Med ; 14(3): e15810, 2022 03 07.
Article in English | MEDLINE | ID: mdl-35212155

ABSTRACT

One year into the Covid-19 vaccination campaign, C. Gerke, B. Pulverer and P. Sansonetti discuss its results and redefine its objectives.


Subject(s)
COVID-19 , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Immunization Programs/methods , SARS-CoV-2 , Vaccination/methods
14.
FEMS Microbiol Rev ; 46(3)2022 05 06.
Article in English | MEDLINE | ID: mdl-35088084

ABSTRACT

Maternal environmental enteric dysfunction (EED) encompasses undernutrition with an inflammatory gut profile, a variable degree of dysbiosis and increased translocation of pathogens in the gut mucosa. Even though recent research findings have shed light on the pathological pathways underlying the establishment of the infant gut dysbiosis, evidence on how maternal EED influences the development of gut dysbiosis and EED in the offspring remains elusive. This review summarizes the current knowledge on the effect of maternal dysbiosis and EED on infant health, and explores recent progress in unraveling the mechanisms of acquisition of a dysbiotic gut microbiota in the offspring. In Western communities, maternal inoculum, delivery mode, perinatal antibiotics, feeding practices and infections are the major drivers of the infant gut microbiota during the first 2 years of life. In other latitudes, the infectious burden and maternal malnutrition might introduce further risk factors for infant gut dysbiosis. Novel tools, such as transcriptomics and metabolomics, have become indispensable to analyze the metabolic environment of the infant in utero and postpartum. Human milk oligosaccharides have essential prebiotic, antimicrobial and anti-biofilm properties that might offer additional therapeutic opportunities.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Anti-Bacterial Agents/pharmacology , Dysbiosis/chemically induced , Female , Humans , Infant , Pregnancy
15.
J Vis Exp ; (175)2021 09 17.
Article in English | MEDLINE | ID: mdl-34605823

ABSTRACT

Reactive oxygen species (ROS) play essential roles in intestinal homeostasis. ROS are natural by-products of cell metabolism. They are produced in response to infection or injury at the mucosal level as they are involved in antimicrobial responses and wound healing. They are also critical secondary messengers, regulating several pathways, including cell growth and differentiation. On the other hand, excessive ROS levels lead to oxidative stress, which can be deleterious for cells and favor intestinal diseases like chronic inflammation or cancer. This work provides a straightforward method to detect ROS in the intestinal murine organoids by live imaging and flow cytometry, using a commercially available fluorogenic probe. Here the protocol describes assaying the effect of compounds that modulate the redox balance in intestinal organoids and detect ROS levels in specific intestinal cell types, exemplified here by the analysis of the intestinal stem cells genetically labeled with GFP. This protocol may be used with other fluorescent probes.


Subject(s)
Organoids , Oxidative Stress , Animals , Intestines , Mice , Oxidation-Reduction , Reactive Oxygen Species
16.
Proc Natl Acad Sci U S A ; 118(37)2021 09 14.
Article in English | MEDLINE | ID: mdl-34504012

ABSTRACT

The interleukin-2 receptor (IL-2R) is a cytokine receptor essential for immunity that transduces proliferative signals regulated by its uptake and degradation. IL-2R is a well-known marker of clathrin-independent endocytosis (CIE), a process devoid of any coat protein, raising the question of how the CIE vesicle is generated. Here, we investigated the impact of IL-2Rγ clustering in its endocytosis. Combining total internal reflection fluorescence (TIRF) live imaging of a CRISPR-edited T cell line endogenously expressing IL-2Rγ tagged with green fluorescent protein (GFP), with multichannel imaging, single-molecule tracking, and quantitative analysis, we were able to decipher IL-2Rγ stoichiometry at the plasma membrane in real time. We identified three distinct IL-2Rγ cluster populations. IL-2Rγ is secreted to the cell surface as a preassembled small cluster of three molecules maximum, rapidly diffusing at the plasma membrane. A medium-sized cluster composed of four to six molecules is key for IL-2R internalization and is promoted by interleukin 2 (IL-2) binding, while larger clusters (more than six molecules) are static and inefficiently internalized. Moreover, we identified membrane cholesterol and the branched actin cytoskeleton as key regulators of IL-2Rγ clustering and IL-2-induced signaling. Both cholesterol depletion and Arp2/3 inhibition lead to the assembly of large IL-2Rγ clusters, arising from the stochastic interaction of receptor molecules in close correlation with their enhanced lateral diffusion at the membrane, thus resulting in a default in IL-2R endocytosis. Despite similar clustering outcomes, while cholesterol depletion leads to a sustained IL-2-dependent signaling, Arp2/3 inhibition prevents signal initiation. Taken together, our results reveal the importance of cytokine receptor clustering for CIE initiation and signal transduction.


Subject(s)
Actin Cytoskeleton/metabolism , Cell Membrane/metabolism , Cholesterol/metabolism , Endocytosis , Receptors, Interleukin-2/metabolism , T-Lymphocytes/metabolism , Biological Transport , Humans , Signal Transduction
17.
Matern Child Nutr ; 17(4): e13215, 2021 10.
Article in English | MEDLINE | ID: mdl-34137176

ABSTRACT

In the MITICA (Mother-to-Infant TransmIssion of microbiota in Central-Africa) study, 48 mothers and their 50 infants were followed from delivery to 6 months between December 2017 and June 2019 in Bangui (Central-African Republic). Blood tests and stool analyses were performed in mothers at delivery, and their offspring at birth, 11 weeks and 25 weeks. Stool cultures were performed in specific growth media for Salmonella, Shigella, E. coli, Campylobacter, Enerobacter, Vibrio cholerae, Citrobacter and Klebsiella, as well as rotavirus, yeasts and parasitological exams. The median vitamin C levels in mothers at delivery were 15.3 µmol/L (inter-quartile-range [IQR] 6.2-27.8 µmol/L). In infants, the median vitamin C levels at birth were 35.2 µmol/L (IQR 16.5-63.9 µmol/L). At 11 and 25 weeks, the median vitamin C levels were 41.5 µmol/L (IQR 18.7-71.6 µmol/L) and 18.2 µmol/L (IQR 2.3-46.6 µmol/L), respectively. Hypovitaminosis C was defined as seric vitamin C levels <28 µmol/L and vitamin C deficiency was defined as vitamin C levels <11 µmol/L according to the WHO definition. In mothers, the prevalence of hypovitaminosis-C and vitamin C deficiency at delivery was 34/45 (75.6%) and 19/45 (42.2%), respectively. In infants, the prevalence of hypovitaminosis-C and vitamin C deficiency at 6 months was 18/33 (54.6%) and 11/33 (33.3%), respectively. Vitamin C levels in mothers and infants were correlated at birth (Spearman's rho = 0.5; P value = 0.002), and infants had significantly higher levels of vitamin C (median = 35.2 µmol/L; IQR 16.5-63.9 µmol/L), compared to mothers (median = 15.3 µmol/L; IQR 6.2-27.8 µmol/L; P value <0.001). The offspring of vitamin C-deficient mothers had significantly lower vitamin C levels at delivery (median = 18.7 µmol/L; IQR 13.3-30.7 µmol/L), compared to the offspring of non-deficient mothers (median = 62.2 µmol/L; IQR 34.6-89.2 µmol/L; P value <0.001). Infants with hypovitaminosis-C were at significantly higher risk of having a positive stool culture during the first 6 months of life (adjusted OR = 5.3, 95% CI 1.1; 26.1; P value = 0.038).


Subject(s)
Mothers , Vitamin D Deficiency , Ascorbic Acid , Central African Republic , Escherichia coli , Female , Humans , Infant , Vitamins
18.
Front Cell Infect Microbiol ; 11: 673122, 2021.
Article in English | MEDLINE | ID: mdl-33996640

ABSTRACT

Bacterial Type III Secretion Systems (T3SSs) are specialized multicomponent nanomachines that mediate the transport of proteins either to extracellular locations or deliver Type III Secretion effectors directly into eukaryotic host cell cytoplasm. Shigella, the causing agent of bacillary dysentery or shigellosis, bears a set of T3SS proteins termed translocators that form a pore in the host cell membrane. IpaB, the major translocator of the system, is a key factor in promoting Shigella pathogenicity. Prior to secretion, IpaB is maintained inside the bacterial cytoplasm in a secretion competent folding state thanks to its cognate chaperone IpgC. IpgC couples T3SS activation to transcription of effector genes through its binding to MxiE, probably after the delivery of IpaB to the secretion export gate. Small Angle X-ray Scattering experiments and modeling reveal that IpgC is found in different oligomeric states in solution, as it forms a stable heterodimer with full-length IpaB in contrast to an aggregation-prone homodimer in the absence of the translocator. These results support a stoichiometry of interaction 1:1 in the IpgC/IpaB complex and the multi-functional nature of IpgC under different T3SS states.


Subject(s)
Dysentery, Bacillary , Shigella , Antigens, Bacterial , Bacterial Proteins/genetics , Humans , Molecular Chaperones/genetics , Shigella flexneri , Type III Secretion Systems/genetics
19.
PLoS Negl Trop Dis ; 15(4): e0009333, 2021 04.
Article in English | MEDLINE | ID: mdl-33878113

ABSTRACT

BACKGROUND: This study aimed to compare the prevalence of intestinal parasite infestations (IPIs) in stunted children, compared to control children, in Ankasina and Andranomanalina Isotry (two disadvantaged neighborhoods of Antananarivo, Madagascar), to characterize associated risk factors and to compare IPI detection by real-time PCR and standard microscopy techniques. METHODOLOGY/PRINCIPAL FINDINGS: Fecal samples were collected from a total of 410 children (171 stunted and 239 control) aged 2-5 years. A single stool sample per subject was examined by simple merthiolate-iodine-formaldehyde (MIF), Kato-Katz smear and real-time PCR techniques. A total of 96.3% of the children were infested with at least one intestinal parasite. The most prevalent parasites were Giardia intestinalis (79.5%), Ascaris lumbricoides (68.3%) and Trichuris trichiura (68.0%). For all parasites studied, real-time PCR showed higher detection rates compared to microscopy (G. intestinalis [77.6% (n = 318) versus 20.9% (n = 86)], Entamoeba histolytica [15.8% (n = 65) versus 1.9% (n = 8)] and A. lumbricoides [64.1% (n = 263) versus 50.7% (n = 208)]). Among the different variables assessed in the study, age of 4 to 5 years (AOR = 4.61; 95% CI, (1.35-15.77)) and primary and secondary educational level of the mother (AOR = 12.59; 95% CI, (2.76-57.47); AOR = 9.17; 95% CI, (2.12-39.71), respectively) were significantly associated with IPIs. Children drinking untreated water was associated with infestation with G. intestinalis (AOR = 1.85; 95% CI, (1.1-3.09)) and E. histolytica (AOR = 1.9; 95% CI, (1.07-3.38)). E. histolytica was also associated with moderately stunted children (AOR = 0.37; 95% CI, 0.2-0.71). Similarly, children aged between 4 and 5 years (AOR = 3.2; 95% CI (2.04-5.01)) and living on noncemented soil types (AOR = 1.85; 95% CI, (1.18-2.09)) were associated with T. trichiura infestation. CONCLUSIONS/SIGNIFICANCE: The prevalence of IPIs is substantial in the studied areas in both stunted and control children, despite the large-scale drug administration of antiparasitic drugs in the country. This high prevalence of IPIs warrants further investigation. Improved health education, environmental sanitation and quality of water sources should be provided.


Subject(s)
Intestinal Diseases, Parasitic/epidemiology , Parasites/physiology , Poverty Areas , Animals , Child, Preschool , Cross-Sectional Studies , Feces/parasitology , Female , Humans , Logistic Models , Madagascar/epidemiology , Male , Multivariate Analysis , Parasites/classification , Parasitology , Prevalence , Risk Factors
20.
EMBO J ; 39(23): e107227, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33205839

ABSTRACT

A number of promising COVID-19 vaccine candidates may pass approval this month. However, the pandemic will only be brought into check through an equitable, epidemiologically informed distribution policy. The health emergency provides a unique opportunity for a new paradigm to mitigate between global health, national and commercial interests.


Subject(s)
COVID-19 Vaccines , COVID-19/prevention & control , Drug Industry/economics , Immunization Programs/organization & administration , COVID-19 Vaccines/economics , Databases, Factual , Developing Countries , Europe , Global Health/economics , Humans , Immunization Programs/economics , Japan , United States , World Health Organization
SELECTION OF CITATIONS
SEARCH DETAIL
...