Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
2.
Basic Res Cardiol ; 116(1): 19, 2021 03 19.
Article in English | MEDLINE | ID: mdl-33742276

ABSTRACT

Endogenous capability of the post-mitotic human heart holds great promise to restore the injured myocardium. Recent evidence indicates that the extracellular vesicles (EVs) regulate cardiac homeostasis and regeneration. Here, we investigated the molecular mechanism of EVs for self-repair. We isolated EVs from human iPSC-derived cardiomyocytes (iCMs), which were exposed to hypoxic (hEVs) and normoxic conditions (nEVs), and examined their roles in in vitro and in vivo models of cardiac injury. hEV treatment significantly improved the viability of hypoxic iCMs in vitro and cardiac function of severely injured murine myocardium in vivo. Microarray analysis of the EVs revealed significantly enriched expression of the miR-106a-363 cluster (miR cluster) in hEVs vs. nEVs. This miR cluster preserved survival and contractility of hypoxia-injured iCMs and maintained murine left-ventricular (LV) chamber size, improved LV ejection fraction, and reduced myocardial fibrosis of the injured myocardium. RNA-Seq analysis identified Jag1-Notch3-Hes1 as a target intracellular pathway of the miR cluster. Moreover, the study found that the cell cycle activator and cytokinesis genes were significantly up-regulated in the iCMs treated with miR cluster and Notch3 siRNA. Together, these results suggested that the miR cluster in the EVs stimulated cardiomyocyte cell cycle re-entry by repressing Notch3 to induce cell proliferation and augment myocardial self-repair. The miR cluster may represent an effective therapeutic approach for ischemic cardiomyopathy.


Subject(s)
Cell Proliferation , Extracellular Vesicles/transplantation , Induced Pluripotent Stem Cells/transplantation , MicroRNAs/metabolism , Myocardial Infarction/surgery , Myocytes, Cardiac/metabolism , Receptor, Notch3/metabolism , Regeneration , Animals , Cell Hypoxia , Cell Line , Disease Models, Animal , Extracellular Vesicles/metabolism , Female , Humans , Induced Pluripotent Stem Cells/metabolism , Male , Mice, Inbred C57BL , Mice, SCID , MicroRNAs/genetics , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Myocardial Infarction/physiopathology , Myocytes, Cardiac/pathology , Receptor, Notch3/genetics , Recovery of Function , Signal Transduction , Ventricular Function, Left
3.
J Am Coll Cardiol ; 77(8): 1073-1088, 2021 03 02.
Article in English | MEDLINE | ID: mdl-33632482

ABSTRACT

BACKGROUND: Mitochondrial dysfunction results in an imbalance between energy supply and demand in a failing heart. An innovative therapy that targets the intracellular bioenergetics directly through mitochondria transfer may be necessary. OBJECTIVES: The purpose of this study was to establish a preclinical proof-of-concept that extracellular vesicle (EV)-mediated transfer of autologous mitochondria and their related energy source enhance cardiac function through restoration of myocardial bioenergetics. METHODS: Human-induced pluripotent stem cell-derived cardiomyocytes (iCMs) were employed. iCM-conditioned medium was ultracentrifuged to collect mitochondria-rich EVs (M-EVs). Therapeutic effects of M-EVs were investigated using in vivo murine myocardial infarction (MI) model. RESULTS: Electron microscopy revealed healthy-shaped mitochondria inside M-EVs. Confocal microscopy showed that M-EV-derived mitochondria were transferred into the recipient iCMs and fused with their endogenous mitochondrial networks. Treatment with 1.0 × 108/ml M-EVs significantly restored the intracellular adenosine triphosphate production and improved contractile profiles of hypoxia-injured iCMs as early as 3 h after treatment. In contrast, isolated mitochondria that contained 300× more mitochondrial proteins than 1.0 × 108/ml M-EVs showed no effect after 24 h. M-EVs contained mitochondrial biogenesis-related messenger ribonucleic acids, including proliferator-activated receptor γ coactivator-1α, which on transfer activated mitochondrial biogenesis in the recipient iCMs at 24 h after treatment. Finally, intramyocardial injection of 1.0 × 108 M-EVs demonstrated significantly improved post-MI cardiac function through restoration of bioenergetics and mitochondrial biogenesis. CONCLUSIONS: M-EVs facilitated immediate transfer of their mitochondrial and nonmitochondrial cargos, contributing to improved intracellular energetics in vitro. Intramyocardial injection of M-EVs enhanced post-MI cardiac function in vivo. This therapy can be developed as a novel, precision therapeutic for mitochondria-related diseases including heart failure.


Subject(s)
Extracellular Vesicles/transplantation , Induced Pluripotent Stem Cells/transplantation , Mitochondria/transplantation , Myocardial Reperfusion Injury/therapy , Myocytes, Cardiac/transplantation , Adenosine Triphosphate/metabolism , Animals , Disease Models, Animal , Energy Metabolism , Humans , Mice , Myocardial Contraction , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Proof of Concept Study , Receptors, Estrogen/metabolism
4.
J Am Heart Assoc ; 9(6): e014345, 2020 03 17.
Article in English | MEDLINE | ID: mdl-32131688

ABSTRACT

Background Induced pluripotent stem cells and their differentiated cardiomyocytes (iCMs) have tremendous potential as patient-specific therapy for ischemic cardiomyopathy following myocardial infarctions, but difficulties in viable transplantation limit clinical translation. Exosomes secreted from iCMs (iCM-Ex) can be robustly collected in vitro and injected in lieu of live iCMs as a cell-free therapy for myocardial infarction. Methods and Results iCM-Ex were precipitated from iCM supernatant and characterized by protein marker expression, nanoparticle tracking analysis, and functionalized nanogold transmission electron microscopy. iCM-Ex were then used in in vitro and in vivo models of ischemic injuries. Cardiac function in vivo was evaluated by left ventricular ejection fraction and myocardial viability measurements by magnetic resonance imaging. Cardioprotective mechanisms were studied by JC-1 (tetraethylbenzimidazolylcarbocyanine iodide) assay, immunohistochemistry, quantitative real-time polymerase chain reaction, transmission electron microscopy, and immunoblotting. iCM-Ex measured ≈140 nm and expressed CD63 and CD9. iCM and iCM-Ex microRNA profiles had significant overlap, indicating that exosomal content was reflective of the parent cell. Mice treated with iCM-Ex demonstrated significant cardiac improvement post-myocardial infarction, with significantly reduced apoptosis and fibrosis. In vitro iCM apoptosis was significantly reduced by hypoxia and exosome biogenesis inhibition and restored by treatment with iCM-Ex or rapamycin. Autophagosome production and autophagy flux was upregulated in iCM-Ex groups in vivo and in vitro. Conclusions iCM-Ex improve post-myocardial infarction cardiac function by regulating autophagy in hypoxic cardiomyoytes, enabling a cell-free, patient-specific therapy for ischemic cardiomyopathy.


Subject(s)
Autophagy , Exosomes/transplantation , Induced Pluripotent Stem Cells/transplantation , Myocardial Infarction/therapy , Myocardium/ultrastructure , Myocytes, Cardiac/transplantation , Animals , Apoptosis , Autophagy-Related Proteins/metabolism , Cell Hypoxia , Cell Line , Disease Models, Animal , Exosomes/metabolism , Exosomes/ultrastructure , Female , Fibrosis , Humans , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/ultrastructure , Mice, SCID , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Myocardial Infarction/physiopathology , Myocardium/metabolism , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/ultrastructure , Recovery of Function , Signal Transduction , Stroke Volume , Ventricular Function, Left
5.
Front Cell Neurosci ; 13: 394, 2019.
Article in English | MEDLINE | ID: mdl-31551712

ABSTRACT

In the present study, we assessed efficacy of exosomes harvested from human and mouse stem cell cultures in protection of mouse primary astrocyte and neuronal cell cultures following in vitro ischemia, and against ischemic stroke in vivo. Cell media was collected from primary mouse neural stem cell (NSC) cultures or from human induced pluripotent stem cell-derived cardiomyocyte (iCM) cultures. Exosomes were extracted and purified by polyethylene glycol complexing and centrifugation, and exosome size and concentration were determined with a NanoSiteTM particle analyzer. Exosomes were applied to primary mouse cortical astrocyte or neuronal cultures prior to, and/or during, combined oxygen-glucose deprivation (OGD) injury. Cell death was assessed via lactate dehydrogenase (LHD) and propidium iodide staining 24 h after injury. NSC-derived exosomes afforded marked protection to astrocytes following OGD. A more modest (but significant) level of protection was observed with human iCM-derived exosomes applied to astrocytes, and with NSC-derived exosomes applied to primary neuronal cultures. In subsequent experiments, NSC-derived exosomes were injected intravenously into adult male mice 2 h after transient (1 h) middle cerebral artery occlusion (MCAO). Gross motor function was assessed 1 day after reperfusion and infarct volume was assessed 4 days after reperfusion. Mice treated post-stroke with intravenous NSC-derived exosomes exhibited significantly reduced infarct volumes. Together, these results suggest that exosomes isolated from mouse NSCs provide neuroprotection against experimental stroke possibly via preservation of astrocyte function. Intravenous NSC-derived exosome treatment may therefore provide a novel clinical adjuvant for stroke in the immediate post-injury period.

6.
ACS Nano ; 12(3): 2253-2266, 2018 03 27.
Article in English | MEDLINE | ID: mdl-29536733

ABSTRACT

Cellular uptake of nanoparticles (NPs) depends on the nature of the nanobio system including the solid nanocomponents ( e. g., physicochemical properties of NPs), nanobio interfaces ( e. g., protein corona composition), and the cellular characteristics ( e. g., cell type). In this study, we document the role of sex in cellular uptake of NPs as an "overlooked" factor in nanobio interface investigations. We demonstrate that cell sex leads to differences in NP uptake between male and female human amniotic stem cells (hAMSCs), with greater uptake by female cells. hAMSCs are one of the earliest sources of somatic stem cells. The experiments were replicated with primary fibroblasts isolated from the salivary gland of adult male and female donors of similar ages, and again the extent of NP uptake was altered by cell sex. However, in contrast to hAMSCs, uptake was greater in male cells. We also found out that female versus male amniotic stem cells exhibited different responses to reprogramming into induced pluripotent stem cells (iPSCs) by the Yamanaka factors. Thus, future studies should consider the effect of sex on the nanobio interactions to optimize clinical translation of NPs and iPSC biology and to help researchers to better design and produce safe and efficient therapeutic sex-specific NPs.


Subject(s)
Fibroblasts/metabolism , Nanoparticles/metabolism , Stem Cells/metabolism , Actin Cytoskeleton/metabolism , Actin Cytoskeleton/ultrastructure , Animals , COS Cells , Cells, Cultured , Chlorocebus aethiops , Clathrin/metabolism , Clathrin/ultrastructure , Endocytosis , Female , Fibroblasts/ultrastructure , Humans , Male , Nanoparticles/analysis , Stem Cells/ultrastructure
7.
Circ Res ; 121(6): e22-e36, 2017 Sep 01.
Article in English | MEDLINE | ID: mdl-28743804

ABSTRACT

RATIONALE: Cardiac myocytes derived from pluripotent stem cells have demonstrated the potential to mitigate damage of the infarcted myocardium and improve left ventricular ejection fraction. However, the mechanism underlying the functional benefit is unclear. OBJECTIVE: To evaluate whether the transplantation of cardiac-lineage differentiated derivatives enhance myocardial viability and restore left ventricular ejection fraction more effectively than undifferentiated pluripotent stem cells after a myocardial injury. Herein, we utilize novel multimodality evaluation of human embryonic stem cells (hESCs), hESC-derived cardiac myocytes (hCMs), human induced pluripotent stem cells (iPSCs), and iPSC-derived cardiac myocytes (iCMs) in a murine myocardial injury model. METHODS AND RESULTS: Permanent ligation of the left anterior descending coronary artery was induced in immunosuppressed mice. Intramyocardial injection was performed with (1) hESCs (n=9), (2) iPSCs (n=8), (3) hCMs (n=9), (4) iCMs (n=14), and (5) PBS control (n=10). Left ventricular ejection fraction and myocardial viability, measured by cardiac magnetic resonance imaging and manganese-enhanced magnetic resonance imaging, respectively, was significantly improved in hCM- and iCM-treated mice compared with pluripotent stem cell- or control-treated mice. Bioluminescence imaging revealed limited cell engraftment in all treated groups, suggesting that the cell secretions may underlie the repair mechanism. To determine the paracrine effects of the transplanted cells, cytokines from supernatants from all groups were assessed in vitro. Gene expression and immunohistochemistry analyses of the murine myocardium demonstrated significant upregulation of the promigratory, proangiogenic, and antiapoptotic targets in groups treated with cardiac lineage cells compared with pluripotent stem cell and control groups. CONCLUSIONS: This study demonstrates that the cardiac phenotype of hCMs and iCMs salvages the injured myocardium effectively than undifferentiated stem cells through their differential paracrine effects.


Subject(s)
Induced Pluripotent Stem Cells/transplantation , Myocardial Infarction/therapy , Myocytes, Cardiac/transplantation , Animals , Cell Line , Cells, Cultured , Cytokines/genetics , Cytokines/metabolism , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Embryonic Stem Cells/transplantation , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Mice , Myocytes, Cardiac/cytology , Myocytes, Cardiac/metabolism , Paracrine Communication , Stem Cell Transplantation/methods
8.
Trends Biotechnol ; 35(10): 937-953, 2017 10.
Article in English | MEDLINE | ID: mdl-28666544

ABSTRACT

Alzheimer's disease (AD) is a type of dementia that causes major issues for patients' memory, thinking, and behavior. Despite efforts to advance AD diagnostic and therapeutic tools, AD remains incurable due to its complex and multifactorial nature and lack of effective diagnostics/therapeutics. Nanoparticles (NPs) have demonstrated the potential to overcome the challenges and limitations associated with traditional diagnostics/therapeutics. Nanotechnology is now offering new tools and insights to advance our understanding of AD and eventually may offer new hope to AD patients. Here, we review the key roles of nanotechnologies in the recent literature, in both diagnostic and therapeutic aspects of AD, and discuss how these achievements may improve patient prognosis and quality of life.


Subject(s)
Alzheimer Disease , Nanoparticles , Nanotechnology , Alzheimer Disease/diagnosis , Alzheimer Disease/therapy , Animals , Humans , Nanoparticles/chemistry , Nanoparticles/therapeutic use , Nanotechnology/methods , Nanotechnology/trends
9.
Circulation ; 135(15): 1417-1428, 2017 Apr 11.
Article in English | MEDLINE | ID: mdl-28209728

ABSTRACT

BACKGROUND: Atherosclerotic peripheral artery disease affects 8% to 12% of Americans >65 years of age and is associated with a major decline in functional status, increased myocardial infarction and stroke rates, and increased risk of ischemic amputation. Current treatment strategies for claudication have limitations. PACE (Patients With Intermittent Claudication Injected With ALDH Bright Cells) is a National Heart, Lung, and Blood Institute-sponsored, randomized, double-blind, placebo-controlled, phase 2 exploratory clinical trial designed to assess the safety and efficacy of autologous bone marrow-derived aldehyde dehydrogenase bright (ALDHbr) cells in patients with peripheral artery disease and to explore associated claudication physiological mechanisms. METHODS: All participants, randomized 1:1 to receive ALDHbr cells or placebo, underwent bone marrow aspiration and isolation of ALDHbr cells, followed by 10 injections into the thigh and calf of the index leg. The coprimary end points were change from baseline to 6 months in peak walking time (PWT), collateral count, peak hyperemic popliteal flow, and capillary perfusion measured by magnetic resonance imaging, as well as safety. RESULTS: A total of 82 patients with claudication and infrainguinal peripheral artery disease were randomized at 9 sites, of whom 78 had analyzable data (57 male, 21 female patients; mean age, 66±9 years). The mean±SEM differences in the change over 6 months between study groups for PWT (0.9±0.8 minutes; 95% confidence interval [CI] -0.6 to 2.5; P=0.238), collateral count (0.9±0.6 arteries; 95% CI, -0.2 to 2.1; P=0.116), peak hyperemic popliteal flow (0.0±0.4 mL/s; 95% CI, -0.8 to 0.8; P=0.978), and capillary perfusion (-0.2±0.6%; 95% CI, -1.3 to 0.9; P=0.752) were not significant. In addition, there were no significant differences for the secondary end points, including quality-of-life measures. There were no adverse safety outcomes. Correlative relationships between magnetic resonance imaging measures and PWT were not significant. A post hoc exploratory analysis suggested that ALDHbr cell administration might be associated with an increase in the number of collateral arteries (1.5±0.7; 95% CI, 0.1-2.9; P=0.047) in participants with completely occluded femoral arteries. CONCLUSIONS: ALDHbr cell administration did not improve PWT or magnetic resonance outcomes, and the changes in PWT were not associated with the anatomic or physiological magnetic resonance imaging end points. Future peripheral artery disease cell therapy investigational trial design may be informed by new anatomic and perfusion insights. CLINICAL TRIAL REGISTRATION: URL: http://www.clinicaltrials.gov. Unique identifier: NCT01774097.


Subject(s)
Cell- and Tissue-Based Therapy , Peripheral Arterial Disease/therapy , Aged , Aldehyde Dehydrogenase/metabolism , Bone Marrow Cells/metabolism , Bone Marrow Transplantation , Cell- and Tissue-Based Therapy/adverse effects , Cell- and Tissue-Based Therapy/methods , Comorbidity , Exercise , Extremities/blood supply , Female , Follow-Up Studies , Humans , Intermittent Claudication/therapy , Male , Middle Aged , Perfusion , Peripheral Arterial Disease/diagnosis , Peripheral Arterial Disease/metabolism , Quality of Life , Risk Factors , Treatment Outcome
10.
Stem Cells Int ; 2016: 4198790, 2016.
Article in English | MEDLINE | ID: mdl-27127519

ABSTRACT

Stem cell therapy has broad applications in regenerative medicine and increasingly within cardiovascular disease. Stem cells have emerged as a leading therapeutic option for many diseases and have broad applications in regenerative medicine. Injuries to the heart are often permanent due to the limited proliferation and self-healing capability of cardiomyocytes; as such, stem cell therapy has become increasingly important in the treatment of cardiovascular diseases. Despite extensive efforts to optimize cardiac stem cell therapy, challenges remain in the delivery and monitoring of cells injected into the myocardium. Other fields have successively used nanoscience and nanotechnology for a multitude of biomedical applications, including drug delivery, targeted imaging, hyperthermia, and tissue repair. In particular, superparamagnetic iron oxide nanoparticles (SPIONs) have been widely employed for molecular and cellular imaging. In this mini-review, we focus on the application of superparamagnetic iron oxide nanoparticles in targeting and monitoring of stem cells for the treatment of myocardial infarctions.

SELECTION OF CITATIONS
SEARCH DETAIL
...