Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38895437

ABSTRACT

Exposure to loud noise is a common cause of acquired hearing loss. Disruption of subcellular calcium homeostasis and downstream stress pathways in the endoplasmic reticulum and mitochondria, including the unfolded protein response, have been implicated in the pathophysiology of noise-induced hearing loss. However, studies on the association between calcium homeostasis and stress pathways has been limited due to limited ability to measure calcium dynamics in mature-hearing, noise-exposed mice. We used a genetically encoded calcium indicator mouse model in which GcAMP is expressed specifically in hair cells or supporting cells under control of Myo15Cre or Sox2Cre, respectively. We performed live calcium imaging and UPR gene expression analysis in 8-week-old mice exposed to levels of noise that cause cochlear synaptopathy (98 db SPL) or permanent hearing loss (106 dB SPL). UPR activation occurred immediately after noise exposure and was noise dose-dependent, with the pro-apoptotic pathway upregulated only after 106 dB noise exposure. Spontaneous calcium transients in hair cells and intercellular calcium waves in supporting cells, which are present in neonatal cochleae, were quiescent in mature-hearing cochleae, but re-activated upon noise exposure. 106 dB noise exposure was associated with more persistent and expansive ICS wave activity. These findings demonstrate a strong and dose-dependent association between noise exposure, UPR activation, and changes in calcium homeostasis in hair cells and supporting cells, suggesting that targeting these pathways may be effective to develop treatments for noise-induced hearing loss.

2.
Commun Biol ; 7(1): 421, 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38582813

ABSTRACT

Moderate noise exposure induces cochlear synaptopathy, the loss of afferent ribbon synapses between cochlear hair cells and spiral ganglion neurons, which is associated with functional hearing decline. Prior studies have demonstrated noise-induced changes in the distribution and number of synaptic components, but the dynamic changes that occur after noise exposure have not been directly visualized. Here, we describe a live imaging model using RIBEYE-tagRFP to enable direct observation of pre-synaptic ribbons in mature hearing mouse cochleae after synaptopathic noise exposure. Ribbon number does not change, but noise induces an increase in ribbon volume as well as movement suggesting unanchoring from synaptic tethers. A subgroup of basal ribbons displays concerted motion towards the cochlear nucleus with subsequent migration back to the cell membrane after noise cessation. Understanding the immediate dynamics of synaptic damage after noise exposure may facilitate identification of specific target pathways to treat cochlear synaptopathy.


Subject(s)
Hearing Loss, Noise-Induced , Animals , Mice , Hearing Loss, Noise-Induced/etiology , Hearing Loss, Noise-Induced/metabolism , Cochlea , Hearing , Noise/adverse effects , Synapses/physiology
3.
Dis Model Mech ; 15(12)2022 12 01.
Article in English | MEDLINE | ID: mdl-36533556

ABSTRACT

Meckel syndrome, nephronophthisis, Joubert syndrome and Bardet-Biedl syndrome are caused by mutations in proteins that localize to the ciliary transition zone (TZ). The phenotypically distinct syndromes suggest that these TZ proteins have differing functions. However, mutations in a single TZ gene can result in multiple syndromes, suggesting that the phenotype is influenced by modifier genes. We performed a comprehensive analysis of ten zebrafish TZ mutants, including mks1, tmem216, tmem67, rpgrip1l, cc2d2a, b9d2, cep290, tctn1, nphp1 and nphp4, as well as mutants in ift88 and ift172. Our data indicate that variations in phenotypes exist between different TZ mutants, supporting different tissue-specific functions of these TZ genes. Further, we observed phenotypic variations within progeny of a single TZ mutant, reminiscent of multiple disease syndromes being associated with mutations in one gene. In some mutants, the dynamics of the phenotype became complex with transitory phenotypes that are corrected over time. We also demonstrated that multiple-guide-derived CRISPR/Cas9 F0 'crispant' embryos recapitulate zygotic null phenotypes, and rapidly identified ciliary phenotypes in 11 cilia-associated gene candidates (ankfn1, ccdc65, cfap57, fhad1, nme7, pacrg, saxo2, c1orf194, ttc26, zmynd12 and cfap52).


Subject(s)
Cilia , Polycystic Kidney Diseases , Animals , Cilia/metabolism , Zebrafish/genetics , Penetrance , Syndrome , Polycystic Kidney Diseases/metabolism , Biological Variation, Population , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism , Vesicular Transport Proteins/genetics
4.
Dis Model Mech ; 14(7)2021 07 01.
Article in English | MEDLINE | ID: mdl-34296747

ABSTRACT

The vacuolar-type H+-ATPase (V-ATPase) is a multi-subunit proton pump that regulates cellular pH. V-ATPase activity modulates several cellular processes, but cell-type-specific functions remain poorly understood. Patients with mutations in specific V-ATPase subunits can develop sensorineural deafness, but the underlying mechanisms are unclear. Here, we show that V-ATPase mutations disrupt the formation of zebrafish neuromasts, which serve as a model to investigate hearing loss. V-ATPase mutant neuromasts are small and contain pyknotic nuclei that denote dying cells. Molecular markers and live imaging show that loss of V-ATPase induces mechanosensory hair cells in neuromasts, but not neighboring support cells, to undergo caspase-independent necrosis-like cell death. This is the first demonstration that loss of V-ATPase can lead to necrosis-like cell death in a specific cell type in vivo. Mechanistically, loss of V-ATPase reduces mitochondrial membrane potential in hair cells. Modulating the mitochondrial permeability transition pore, which regulates mitochondrial membrane potential, improves hair cell survival. These results have implications for understanding the causes of sensorineural deafness, and more broadly, reveal functions for V-ATPase in promoting survival of a specific cell type in vivo.


Subject(s)
Vacuolar Proton-Translocating ATPases , Zebrafish , Animals , Caspases/metabolism , Hair Cells, Auditory/metabolism , Humans , Necrosis/metabolism , Vacuolar Proton-Translocating ATPases/genetics , Vacuolar Proton-Translocating ATPases/metabolism , Zebrafish/metabolism
5.
Mol Biol Cell ; 29(5): 532-541, 2018 03 01.
Article in English | MEDLINE | ID: mdl-29282278

ABSTRACT

We propose to understand how the mitotic kinase PLK1 drives chromosome segregation errors, with a specific focus on Gravin, a PLK1 scaffold. In both three-dimensional primary prostate cancer cell cultures that are prone to Gravin depletion and Gravin short hairpin RNA (shRNA)-treated cells, an increase in cells containing micronuclei was noted in comparison with controls. To examine whether the loss of Gravin affected PLK1 distribution and activity, we utilized photokinetics and a PLK1 activity biosensor. Gravin depletion resulted in an increased PLK1 mobile fraction, causing the redistribution of active PLK1, which leads to increased defocusing and phosphorylation of the mitotic centrosome protein CEP215 at serine-613. Gravin depletion further led to defects in microtubule renucleation from mitotic centrosomes, decreased kinetochore-fiber integrity, increased incidence of chromosome misalignment, and subsequent formation of micronuclei following mitosis completion. Murine Gravin rescued chromosome misalignment and micronuclei formation, but a mutant Gravin that cannot bind PLK1 did not. These findings suggest that disruption of a Gravin-PLK1 interface leads to inappropriate PLK1 activity contributing to chromosome segregation errors, formation of micronuclei, and subsequent DNA damage.


Subject(s)
A Kinase Anchor Proteins/metabolism , Cell Cycle Proteins/metabolism , Centrosome/metabolism , Mitosis , Protein Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins/metabolism , A Kinase Anchor Proteins/genetics , Animals , Cell Cycle Proteins/genetics , Chromosome Segregation , DNA Damage , Fibroblasts , HEK293 Cells , HeLa Cells , Humans , Mice , Phosphorylation , Protein Serine-Threonine Kinases/genetics , Proto-Oncogene Proteins/genetics , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Spindle Apparatus/metabolism , Polo-Like Kinase 1
SELECTION OF CITATIONS
SEARCH DETAIL
...