Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-39033202

ABSTRACT

To assess public exposure to radon, thoron, and their progeny, measurements were conducted in 50 dwellings within the bauxite-rich area of Fongo-Tongo in western Cameroon. Passive integrating radon-thoron discriminative detectors (specifically RADUET) were employed for radon and thoron measurements. Additionally, concentrations of short-lived radon and thoron progeny were estimated using Direct Radon Progeny Sensors (DRPSs) and Direct Thoron Progeny Sensors (DTPSs) based on LR-115 detectors. The findings revealed indoor radon concentrations ranging from 31 to 123 Bq m-3 with a geometric mean (GM) of 62 Bq m-3, and indoor thoron concentrations ranging from 36 to 688 Bq m-3 with a GM of 242 Bq m-3. The Equilibrium Equivalent Radon Concentration (EERC) ranged from 3 to 86 Bq m-3 with a GM of 25 Bq m-3, while the Equilibrium Equivalent Thoron Concentration (EETC) ranged from 1.2 to 12.5 Bq m-3 with a GM of 7.6 Bq m-3. Notably, all dwellings recorded radon concentrations below 100 Bq m-3. Arithmetic means of radon and thoron equilibrium factors were calculated as 0.47 and 0.04, respectively. To assess annual effective doses from radon and thoron inhalation, equilibrium factors were used along with direct measurements of EERC and EETC. The differences observed in annual effective doses were 4.5% for radon and 42.5% for thoron. Furthermore, the contribution of thoron and its decay products to the annual effective dose from radon, thoron, and their progeny ranged from 12 to 94%, with an average contribution of 58%. Thus, this study found that the effective dose due to thoron inhalation in the study area exceeded that due to radon inhalation. It is concluded that, when evaluating radiation doses and health risks, it is crucial to consider both thoron and its progeny alongside radon and its progeny. This underscores the importance of considering direct measurements for accurately estimating radiation doses.

2.
Sci Rep ; 14(1): 16103, 2024 07 12.
Article in English | MEDLINE | ID: mdl-38997265

ABSTRACT

High dose radiation exposures are rare. However, medical management of such incidents is crucial due to mortality and tissue injury risks. Rapid radiation biodosimetry of high dose accidental exposures is highly challenging, considering that they usually involve non uniform fields leading to partial body exposures. The gold standard, dicentric assay and other conventional methods have limited application in such scenarios. As an alternative, we propose Premature Chromosome Condensation combined with Fluorescent In-situ Hybridization (G0-PCC-FISH) as a promising tool for partial body exposure biodosimetry. In the present study, partial body exposures were simulated ex-vivo by mixing of uniformly exposed blood with unexposed blood in varying proportions. After G0-PCC-FISH, Dolphin's approach with background correction was used to provide partial body exposure dose estimates and these were compared with those obtained from conventional dicentric assay and G0-PCC-Fragment assay (conventional G0-PCC). Dispersion analysis of aberrations from partial body exposures was carried out and compared with that of whole-body exposures. The latter was inferred from a multi-donor, wide dose range calibration curve, a-priori established for whole-body exposures. With the dispersion analysis, novel multi-parametric methodology for discerning the partial body exposure from whole body exposure and accurate dose estimation has been formulated and elucidated with the help of an example. Dose and proportion dependent reduction in sensitivity and dose estimation accuracy was observed for Dicentric assay, but not in the two PCC methods. G0-PCC-FISH was found to be most accurate for the dose estimation. G0-PCC-FISH has potential to overcome the shortcomings of current available methods and can provide rapid, accurate dose estimation of partial body and high dose accidental exposures. Biological dose estimation can be useful to predict progression of disease manifestation and can help in pre-planning of appropriate & timely medical intervention.


Subject(s)
In Situ Hybridization, Fluorescence , In Situ Hybridization, Fluorescence/methods , Humans , Chromosome Aberrations/radiation effects , Radiation Exposure/adverse effects , Radiometry/methods , Radiation Dosage , Male , Dose-Response Relationship, Radiation
3.
Med Phys ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38935327

ABSTRACT

BACKGROUND: Combining the sharp dose fall off feature of beta-emitting 106Ru/106Rh radionuclide with larger penetration depth feature of photon-emitting125I radionuclide in a bi-radionuclide plaque, prescribed dose to the tumor apex can be delivered while maintaining the tumor dose uniformity and sparing the organs at risk. The potential advantages of bi-radionuclide plaque could be of interest in context of ocular brachytherapy. PURPOSE: The aim of the study is to evaluate the dosimetric advantages of a proposed bi-radionuclide plaque for two different designs, consisting of indigenous 125I seeds and 106Ru/106Rh plaque, using Monte Carlo technique. The study also explores the influence of other commercial 125I seed models and presence or absence of silastic/acrylic seed carrier on the calculated dose distributions. The study further included the calculation of depth dose distributions for the bi-radionuclide eye plaque for which experimental data are available. METHODS: The proposed bi-radionuclide plaque consists of a 1.2-mm-thick silver (Ag) spherical shell with radius of curvature of 12.5 mm, 20 µm-thick-106Ru/106Rh encapsulated between 0.2 mm Ag disk, and a 0.1-mm-thick Ag window, and water-equivalent gel containing 12 symmetrically arranged 125I seeds. Two bi-radionuclide plaque models investigated in the present study are designated as Design I and Design II. In Design I, 125I seeds are placed on the top of the plaque, while in Design II 106Ru/106Rh source is positioned on the top of the plaque. In Monte Carlo calculations, the plaque is positioned in a spherical water phantom of 30 cm diameter. RESULTS: The proposed bi-radionuclide eye plaque demonstrated superior dose distributions as compared to 125I or 106Ru plaque for tumor thicknesses ranges from 5 to 10 mm. Amongst the designs, dose at a given voxel for Design I is higher as compared to the corresponding voxel dose for Design II. This difference is attributed to the higher degree of attenuation of 125I photons in Ag as compared to beta particles. Influence of different 125I seed models on the normalized lateral dose profiles of Design I (in the absence of carrier) is negligible and within 5% on the central axis depth dose distribution as compared to the corresponding values of the plaque that has indigenous 125I seeds. In the presence of a silastic/acrylic seed carrier, the normalized central axis dose distributions of Design I are smaller by 3%-12% as compared to the corresponding values in the absence of a seed carrier. For the published bi-radionuclide plaque model, good agreement is observed between the Monte Carlo-calculated and published measured depth dose distributions for clinically relevant depths. CONCLUSION: Regardless of the type of 125I seed model utilized and whether silastic/acrylic seed carrier is present or not, Design I bi-radionuclide plaque offers superior dose distributions in terms of tumor dose uniformity, rapid dose fall off and lesser dose to nearby critical organs at risk over the Design II plaque. This shows that Design I bi-radionuclide plaque could be a promising alternative to 125I plaque for treatment of tumor sizes in the range 5 to 10 mm.

4.
Radiat Prot Dosimetry ; 200(10): 890-900, 2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38847419

ABSTRACT

The metrological quality of a measurement is characterised by evaluating the uncertainty in the measurement. In this paper, uncertainty in personal dose measured using individual monitoring CaSO4:Dy-based thermoluminescence dosimeter badge is evaluated by application of the guide to the expression of uncertainty in measurement method. The present dose reporting quantity, whole body dose (WBD) and the proposed quantity, personal dose equivalent, Hp(10) has been used as measurands. The influence of various input quantities on the measurement were analyzed through tests that conform to the requirements of the International Electrotechnical Commission IEC 62387. The study found that the expanded uncertainties for WBD and Hp(10) measurements were 63.4% and 41.4%, respectively, corresponding to a 95% coverage probability for workplace fields covering a wide photon energy range (33-1250 keV). However, the uncertainty estimates were quite lower for the type of workplaces that are identified using the dose evaluation algorithm. The input quantities, namely, the response to a mixture of photon beam qualities and photon energy and angular dependence contribute the most to the total uncertainty.


Subject(s)
Occupational Exposure , Radiation Dosage , Thermoluminescent Dosimetry , Workplace , Thermoluminescent Dosimetry/instrumentation , Thermoluminescent Dosimetry/methods , Humans , Occupational Exposure/analysis , Uncertainty , Radiation Monitoring/methods , Algorithms , Dysprosium/chemistry , Photons , Radiation Protection/methods , Radiation Protection/standards , Radiation Dosimeters
5.
Radiat Prot Dosimetry ; 199(20): 2401-2405, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38126869

ABSTRACT

Attachment of 222Rn progenies, upon their formation, to the atmospheric aerosols and inhalation of these radioactive aerosols causes inhalation dose to the human being. Aerosols have the characteristics of small particle size, long-time suspension and long-distance transmission and easy access to the deep respiratory tract. Aerosols are responsible for viral infection risk such as the recent worldwide pandemic caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2, or COVID-19). Understanding the formation and behaviour of aerosols in a confined environment in various human habitations is essential to combat such detrimental exposures. Experiments have been performed to study the distribution of aerosol size fractions in the walk-in type 222Rn calibration chamber. The real-time applied particle technology monitors (APT-Maxima stationary monitors) were used for the simultaneous measurements of PM1, PM2.5, and PM10 size fractions. The variation of the mass densities (µg m-3) of different size fractions at different positions inside the chamber was monitored by placing APTs. The PM1, PM2.5, and PM10 sizes fractions were distributed homogeneously within the chamber volume and the concentration ratios of these fractions were 1:1.5:1.6 for concentration values of < 1500 µg m-3, and 1:7:9 for the concentration values of > 1500 µg m-3.


Subject(s)
Radon , Humans , Calibration , SARS-CoV-2 , Aerosols , Particulate Matter
SELECTION OF CITATIONS
SEARCH DETAIL