Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 7(1): 4876, 2017 07 07.
Article in English | MEDLINE | ID: mdl-28687797

ABSTRACT

Microelectromechanical (MEMS) and nanoelectromechanical systems (NEMS) are ideal candidates for exploring quantum fluids, since they can be manufactured reproducibly, cover the frequency range from hundreds of kilohertz up to gigahertz and usually have very low power dissipation. Their small size offers the possibility of probing the superfluid on scales comparable to, and below, the coherence length. That said, there have been hitherto no successful measurements of NEMS resonators in the liquid phases of helium. Here we report the operation of doubly-clamped aluminium nanobeams in superfluid 4He at temperatures spanning the superfluid transition. The devices are shown to be very sensitive detectors of the superfluid density and the normal fluid damping. However, a further and very important outcome of this work is the knowledge that now we have demonstrated that these devices can be successfully operated in superfluid 4He, it is straightforward to apply them in superfluid 3He which can be routinely cooled to below 100 µK. This brings us into the regime where nanomechanical devices operating at a few MHz frequencies may enter their mechanical quantum ground state.

3.
Nat Commun ; 7: 10455, 2016 Jan 27.
Article in English | MEDLINE | ID: mdl-26816217

ABSTRACT

Cooling nanoelectronic structures to millikelvin temperatures presents extreme challenges in maintaining thermal contact between the electrons in the device and an external cold bath. It is typically found that when nanoscale devices are cooled to ∼ 10 mK the electrons are significantly overheated. Here we report the cooling of electrons in nanoelectronic Coulomb blockade thermometers below 4 mK. The low operating temperature is attributed to an optimized design that incorporates cooling fins with a high electron-phonon coupling and on-chip electronic filters, combined with low-noise electronic measurements. By immersing a Coulomb blockade thermometer in the (3)He/(4)He refrigerant of a dilution refrigerator, we measure a lowest electron temperature of 3.7 mK and a trend to a saturated electron temperature approaching 3 mK. This work demonstrates how nanoelectronic samples can be cooled further into the low-millikelvin range.

SELECTION OF CITATIONS
SEARCH DETAIL
...