Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
J Med Chem ; 65(14): 9819-9845, 2022 07 28.
Article in English | MEDLINE | ID: mdl-35816678

ABSTRACT

The Rho kinase (ROCK) pathway is implicated in the pathogenesis of several conditions, including neurological diseases. In Huntington's disease (HD), ROCK is implicated in mutant huntingtin (HTT) aggregation and neurotoxicity, and members of the ROCK pathway are increased in HD mouse models and patients. To validate this mode of action as a potential treatment for HD, we sought a potent, selective, central nervous system (CNS)-penetrant ROCK inhibitor. Identifying a compound that could be dosed orally in mice with selectivity against other AGC kinases, including protein kinase G (PKG), whose inhibition could potentially activate the ROCK pathway, was paramount for the program. We describe the optimization of published ligands to identify a novel series of ROCK inhibitors based on a piperazine core. Morphing of the early series developed in-house by scaffold hopping enabled the identification of a compound exhibiting high potency and desired selectivity and demonstrating a robust pharmacodynamic (PD) effect by the inhibition of ROCK-mediated substrate (MYPT1) phosphorylation after oral dosing.


Subject(s)
Huntington Disease , Animals , Brain/metabolism , Disease Models, Animal , Huntingtin Protein/metabolism , Huntington Disease/drug therapy , Mice , Protein Kinase Inhibitors/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , rho-Associated Kinases
2.
ACS Med Chem Lett ; 12(3): 380-388, 2021 Mar 11.
Article in English | MEDLINE | ID: mdl-33738065

ABSTRACT

Using an iterative structure-activity relationship driven approach, we identified a CNS-penetrant 5-(trifluoromethyl)-1,2,4-oxadiazole (TFMO, 12) with a pharmacokinetic profile suitable for probing class IIa histone deacetylase (HDAC) inhibition in vivo. Given the lack of understanding of endogenous class IIa HDAC substrates, we developed a surrogate readout to measure compound effects in vivo, by exploiting the >100-fold selectivity compound 12 exhibits over class I/IIb HDACs. We achieved adequate brain exposure with compound 12 in mice to estimate a class I/IIb deacetylation EC50, using class I substrate H4K12 acetylation and global acetylation levels as a pharmacodynamic readout. We observed excellent correlation between the compound 12 in vivo pharmacodynamic response and in vitro class I/IIb cellular activity. Applying the same relationship to class IIa HDAC inhibition, we estimated the compound 12 dose required to inhibit class IIa HDAC activity, for use in preclinical models of Huntington's disease.

3.
ACS Med Chem Lett ; 7(1): 34-9, 2016 Jan 14.
Article in English | MEDLINE | ID: mdl-26819662

ABSTRACT

Potent and selective class IIa HDAC tetrasubstituted cyclopropane hydroxamic acid inhibitors were identified with high oral bioavailability that exhibited good brain and muscle exposure. Compound 14 displayed suitable properties for assessment of the impact of class IIa HDAC catalytic site inhibition in preclinical disease models.

SELECTION OF CITATIONS
SEARCH DETAIL