Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 59(9): 6202-6213, 2020 May 04.
Article in English | MEDLINE | ID: mdl-32294375

ABSTRACT

A zinc metal-organic framework, i.e., Zn-MOF (Zn-DBC), with ca. 27% solvent-accessible void volume was synthesized from a rationally designed tetraacid based on sterically insulated dibenzo[g,p]chrysene core; the latter inherently features concave shapes. Due to rigidification of the fluorophore in the MOF, Zn-DBC exhibits a respectable fluorescence quantum yield of ca. 30% in the solid state. The fluorescent and water-stable Zn-DBC MOF was found to display intriguing temperature-dependent emission behavior with an activation barrier of 1.06 kcal/mol for radiationless deactivation from the singlet-excited state. It is shown that the Zn-MOF can be employed as an efficient sensory material for detection of hazardous "quat" dicationic herbicides in water by diffusion-limited "turn-off" fluorescence. Due to confinement of the cationic guest analytes within the pores of the MOF, the fluorescence quenching via excited-state charge transfer mechanism is shown to depend on the molecular size of the analyte in addition to the redox potentials. Remarkably, Zn-DBC permits sensing of DQ, a well-known toxic "quat" herbicide, with a detection limit as low as 2.8 ppm in water. The unique structural attributes of the Zn-MOF for highly efficient fluorescence sensing of toxic herbicides in water are thus exemplified for the first time.

2.
Nanoscale ; 10(47): 22389-22399, 2018 Dec 21.
Article in English | MEDLINE | ID: mdl-30474671

ABSTRACT

2D metal-organic framework nanosheets (MONs) lie at the heart of contemporary research on metal-organic materials. We have rationally designed and synthesized a fluorescent 6-connecting hexaacid linker H6TPA based on the 1,3,5-triphenylbenzene core to access layered MOFs by metal-assisted self-assembly. Treatment of H6TPA with In3+ salt does indeed lead to a layered porous MOF, i.e.In-TPA. It is shown that the ultrasonication-induced liquid phase of exfoliation (UILPE) of the latter in a top-down fashion affords few-layer 2D metal-organic nanosheets (MONs). The delamination of 2D MONs in ethanol occurs with 'turn-on' fluorescence, which is otherwise suppressed in the bulk material. The exfoliated MONs in ethanol exhibit blue fluorescence with a respectable quantum yield of 0.15 and serve as efficient sensory materials for 'turn-off' fluorescence detection of explosive nitroaromatic compounds (NACs). While all nitroaromatics are found to quench the fluorescence of MONs, the most electron-deficient trinitrotoluene (TNT) exhibited the highest efficiency; at 2 mM concentration of TNT, the fluorescence of 2D MONs was found to be quenched with an efficiency of 80% (permitting the detection of TNT at ca. 11 ppm level), while that of the unmetallated linker, i.e.H6TPA, was quenched with only 5% efficiency. The unique attributes of MONs, namely the rigidity of the linker upon metallation and porosity that facilitates guest confinement within the pores, for efficient sensing of nitroaromatics are thus demonstrated for the first time.

3.
Chemistry ; 23(30): 7297-7305, 2017 May 29.
Article in English | MEDLINE | ID: mdl-28370421

ABSTRACT

The self-assembly of a rigid and trigonal prismatic triptycene-hexaacid H6 THA with Co(NO3 )2 or Mn(NO3 )2 leads to isostructural metal-organic frameworks (MOFs) that are sustained by 6-connecting metal cluster [M3 (µ3 -O)(COO)6 ] secondary building units (SBUs). The Co- and Mn-MOFs, constructed from organic and metal-cluster building blocks that are both trigonal prismatic, correspond to the heretofore unknown "tsg" topology. Due to the rigidity and concave attributes of H6 THA, the networks in the Co- and Mn-MOFs are highly porous and undergo 3-fold interpenetration. The interpenetration imparts permanent microporosity and high thermal stability to the MOFs to permit postsynthetic metal exchange (PSME) and gas sorption. The PSME occurs in a single crystal to single crystal fashion when the crystals of Co- or Mn-MOFs are immersed in a solution of Cu(NO3 )2 in MeOH/H2 O. Further, the isostructural robust MOFs exhibit significant gas sorption and remarkable selectivity for CO2 over N2 (ca. 100 fold) at ambient conditions. In fact, the postsynthetically-engineered Cu-THA exhibits better CO2 sorption than Co-THA and Mn-THA. A composite of effects that include pore dimensions (ca. 0.7 nm), unsaturated metal centers, and basic environments conferred by the quinoxaline nitrogen atoms appears to be responsible for the observed high CO2 capture and selectivity. The high symmetry and structural attributes of the organic linker seemingly dictate adoption of the trigonal-prismatic metal cluster SBU by the metal ions in the MOFs.

4.
Chem Sci ; 7(5): 3085-3091, 2016 May 01.
Article in English | MEDLINE | ID: mdl-29997800

ABSTRACT

A highly luminescent and water-stable homochiral Zn-MOF, i.e., Zn-PLA, has been developed based on a pyrene-tetralactic acid, which inherently features concave shapes for guest inclusion, to explore sensing of amino acids by fluorescence quenching; the solid-state fluorescence quantum yield of the MOF was found to be 46%. The fluorescence of an aqueous suspension of Zn-PLA was shown to be quenched specifically by histidine amongst all the other amino acids. Selective sensing of histidine is of prime importance due to its relevance in a variety of biological functions. The lack of quenching of fluorescence of Zn-PLA by all the amino acids other than histidine has been rationalized based on the exchange of the cationic dimethylammonium species in the MOF crystals with histidine that is protonated in water; the latter is envisaged to quench the fluorescence via charge transfer in the excited state. Furthermore, the homochiral crystals of Zn-PLA were found to permit enantiodiscrimination in the quenching by the d- and l-forms such that the ratio of enantioselectivity, i.e., Kd/Kl, is 1.8, as determined by Stern-Volmer quenching plots. The highly selective as well as enantiodifferentiating sensing of amino acids by MOFs is unprecedented for any sensor type.

5.
Inorg Chem ; 54(14): 6829-35, 2015 Jul 20.
Article in English | MEDLINE | ID: mdl-26146942

ABSTRACT

A semirigid tetraacid linker H4L functionalized with 1,2,3-triazole was rationally designed and synthesized to access nitrogen-rich MOFs for selective adsorption of CO2. The cadmium MOF, that is, Cd-L, obtained by the reaction of H4L with Cd(NO3)2, is found to be a 3D porous framework structure that is robust to desolvation. Crystal structure analysis reveals channels that are decorated by the triazole moieties of L. Gas adsorption studies show that Cd-L MOF permits remarkable CO2 uptake to the extent of 99 and 1000 cc/g at 1 and 30 bar, respectively, at 0 °C. While literature survey reveals that MIL-112, constructed from a 1,2,3-triazole functionalized linker, exhibits no porosity to gas adsorption due to structural flexibility, the results with Cd-L MOF described herein emphasize how rigidification of the organic linker improves gas uptake properties of the resultant MOF.


Subject(s)
Cadmium/chemistry , Carbon Dioxide/isolation & purification , Nitrogen/chemistry , Organometallic Compounds/chemistry , Triazoles/chemistry , Adsorption , Models, Molecular , Porosity , Surface Properties
6.
Photochem Photobiol Sci ; 5(10): 903-13, 2006 Oct.
Article in English | MEDLINE | ID: mdl-17019468

ABSTRACT

We have examined the photobehavior of a set of isomers of 2-pyranone-annulated stilbenes (6-styrylcoumarin 1, 7-styrylcoumarin 2, 4-methyl-6-styrylcoumarin 3, and 4-methyl-7-styrylcoumarin, 4) in their crystalline phases. While the cis isomers of 1-3 undergo cis-->trans photoisomerizations in the solid state, cis-4 and the trans isomers of 1-3 do not; the trans isomer of 4 undergoes photo-induced intermolecular reactions. Solution-state irradiations of the trans isomers of 1-4 lead to the cis isomers quite readily, as does cis-4 lead to trans-4, which suggests that the absence of geometric isomerization of the trans isomers and the lack of reactivity of cis-4 in the solid state are due to molecular packing effects. X-Ray crystal structural analyses of 1-4 reveal interesting conformational preferences for the styrenic moieties and differences in the total 'free' volumes within the lattices, but neither factor explains satisfactorily why some of the molecules undergo geometric isomerizations in their single crystals and others do not. Using the PLATON program, we have located the sizes and positions of 'void volumes' within the crystal lattices, and identified trajectories necessary for atomic motions to lead to geometric isomerizations to understand the reactivities of 1-4. The voids in the reactive cis isomers of 1-3 crystals are located along the trajectories needed for geometric isomerization. The relevant voids in the crystals of cis-4 and the trans isomers of 1 and 2 (the non-isomerizing molecules for which suitable crystals could be grown for X-ray analyses) are located along a trajectory that does not permit isomerization. We hypothesize that the classical momentum gained from the initial motions that are facilitated due to the voids in the crystals of the cis isomers of 1-3, as well as the heat dissipated to the local environment by internal conversions and vibronic cascade of the Franck-Condon states, helps to drive the system over potential energy barriers that would not be possible otherwise. Cis-4 and the trans isomers of 1 and 2, as well as other examples from the literature in which geometric isomerizations do or do not occur in the solid state, also follow the predictions based upon the PLATON analyses. On these bases, it is suggested that the methodology described may be generally applicable for predicting when geometric isomerizations (and possibly other reactive processes) in crystalline materials will occur.

SELECTION OF CITATIONS
SEARCH DETAIL