Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Cell Rep ; 42(8): 112892, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37516965

ABSTRACT

Mammalian/mechanistic target of rapamycin (mTOR) regulates global protein synthesis through inactivation of eIF4E-binding proteins (m4E-BPs) in response to nutrient and energy availability. Until now, 4E-BPs have been considered as metazoan inventions, and how target of rapamycin (TOR) controls cap-dependent translation initiation in plants remains obscure. Here, we present short unstructured 4E-BP-like Arabidopsis proteins (4EBP1/4EBP2) that are non-homologous to m4E-BPs except for the eIF4E-binding motif and TOR phosphorylation sites. Unphosphorylated 4EBPs exhibit strong affinity toward eIF4Es and can inhibit formation of the cap-binding complex. Upon TOR activation, 4EBPs are phosphorylated, probably when bound directly to TOR, and likely relocated to ribosomes. 4EBPs can suppress a distinct set of mRNAs; 4EBP2 predominantly inhibits translation of core cell-cycle regulators CycB1;1 and CycD1;1, whereas 4EBP1 interferes with chlorophyll biosynthesis. Accordingly, 4EBP2 overexpression halts early seedling development, which is overcome by induction of Glc/Suc-TOR signaling. Thus, TOR regulates cap-dependent translation initiation by inactivating atypical 4EBPs in plants.


Subject(s)
Eukaryotic Initiation Factor-4E , Sirolimus , Animals , Sirolimus/pharmacology , Eukaryotic Initiation Factor-4E/genetics , Eukaryotic Initiation Factor-4E/metabolism , Phosphorylation , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Signal Transduction , RNA, Messenger/metabolism , Protein Biosynthesis , Phosphoproteins/genetics , Phosphoproteins/metabolism , Mammals/metabolism
2.
EMBO J ; 42(10): e111273, 2023 05 15.
Article in English | MEDLINE | ID: mdl-37021425

ABSTRACT

Plant organogenesis requires matching the available metabolic resources to developmental programs. In Arabidopsis, the root system is determined by primary root-derived lateral roots (LRs), and adventitious roots (ARs) formed from non-root organs. Lateral root formation entails the auxin-dependent activation of transcription factors ARF7, ARF19, and LBD16. Adventitious root formation relies on LBD16 activation by auxin and WOX11. The allocation of shoot-derived sugar to the roots influences branching, but how its availability is sensed for LRs formation remains unknown. We combine metabolic profiling with cell-specific interference to show that LRs switch to glycolysis and consume carbohydrates. The target-of-rapamycin (TOR) kinase is activated in the lateral root domain. Interfering with TOR kinase blocks LR initiation while promoting AR formation. The target-of-rapamycin inhibition marginally affects the auxin-induced transcriptional response of the pericycle but attenuates the translation of ARF19, ARF7, and LBD16. TOR inhibition induces WOX11 transcription in these cells, yet no root branching occurs as TOR controls LBD16 translation. TOR is a central gatekeeper for root branching that integrates local auxin-dependent pathways with systemic metabolic signals, modulating the translation of auxin-induced genes.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Indoleacetic Acids/metabolism , Transcription Factors/metabolism , Plant Roots/metabolism , Gene Expression Regulation, Plant , Phosphatidylinositol 3-Kinases/genetics
3.
New Phytol ; 238(1): 169-185, 2023 04.
Article in English | MEDLINE | ID: mdl-36716782

ABSTRACT

Root hairs (RH) are excellent model systems for studying cell size and polarity since they elongate several hundred-fold their original size. Their tip growth is determined both by intrinsic and environmental signals. Although nutrient availability and temperature are key factors for a sustained plant growth, the molecular mechanisms underlying their sensing and downstream signaling pathways remain unclear. We use genetics to address the roles of the cell surface receptor kinase FERONIA (FER) and the nutrient sensing TOR Complex 1 (TORC) in RH growth. We identified that low temperature (10°C) triggers a strong RH elongation response in Arabidopsis thaliana involving FER and TORC. We found that FER is required to perceive limited nutrient availability caused by low temperature. FERONIA interacts with and activates TORC-downstream components to trigger RH growth. In addition, the small GTPase Rho of plants 2 (ROP2) is also involved in this RH growth response linking FER and TOR. We also found that limited nitrogen nutrient availability can mimic the RH growth response at 10°C in a NRT1.1-dependent manner. These results uncover a molecular mechanism by which a central hub composed by FER-ROP2-TORC is involved in the control of RH elongation under low temperature and nitrogen deficiency.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Nitrates/pharmacology , Nitrates/metabolism , Arabidopsis Proteins/metabolism , Temperature , Phosphotransferases/metabolism , Nitrogen/metabolism , Plant Roots/metabolism , Plant Proteins/metabolism , Anion Transport Proteins/metabolism
4.
Cell Rep ; 39(2): 110671, 2022 04 12.
Article in English | MEDLINE | ID: mdl-35417704

ABSTRACT

RNA silencing is a conserved mechanism in eukaryotes involved in development and defense against viruses. In plants, ARGONAUTE1 (AGO1) protein plays a central role in both microRNA- and small interfering RNA-directed silencing, and its expression is regulated at multiple levels. Here, we report that the F-box protein FBW2 assembles an SCF complex that selectively targets for proteolysis AGO1 when it is unloaded and mutated. Although FBW2 loss of function does not lead to strong growth or developmental defects, it significantly increases RNA-silencing activity. Interestingly, under conditions in which small-RNA accumulation is affected, the failure to degrade AGO1 in fbw2 mutants becomes more deleterious for the plant. Accordingly, the non-degradable AGO1 protein assembles high-molecular-weight complexes and binds illegitimate small RNA, leading to off-target cleavage. Therefore, control of AGO1 homeostasis by FBW2 plays an important role in quality control of RNA silencing.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Argonaute Proteins , F-Box Proteins , MicroRNAs , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Argonaute Proteins/genetics , Argonaute Proteins/metabolism , F-Box Proteins/genetics , F-Box Proteins/metabolism , MicroRNAs/genetics , RNA Interference , RNA, Small Interfering/genetics
5.
PLoS One ; 16(7): e0253488, 2021.
Article in English | MEDLINE | ID: mdl-34242244

ABSTRACT

The untranslated regions (UTRs) of mRNAs are involved in many posttranscriptional regulatory pathways. The rice OsMac1 mRNA has three splicing variants of the 5' UTR (UTRa, UTRb, and UTRc), which include a CU-rich region and three upstream open reading frames (uORFs). UTRc contains an additional 38-nt sequence, termed sp38, which acts as a strong translational enhancer of the downstream ORF; reporter analysis revealed translational efficiencies >15-fold higher with UTRc than with the other splice variants. Mutation analysis of UTRc demonstrated that an optimal sequence length of sp38, rather than its nucleotide sequence is essential for UTRc to promote efficient translation. In addition, the 5' 100 nucleotides of CU-rich region contribute to UTRc translational enhancement. Strikingly, three uORFs did not reveal their inhibitory potential within the full-length leader, whereas deletion of the 5' leader fragment preceding the leader region with uORFs nearly abolished translation. Computational prediction of UTRc structural motifs revealed stem-loop structures, termed SL1-SL4, and two regions, A and B, involved in putative intramolecular interactions. Our data suggest that SL4 binding to Region-A and base pairing between Region-B and the UTRc 3'end are critically required for translational enhancement. Since UTRc is not capable of internal initiation, we presume that the three-dimensional leader structures can allow translation of the leader downstream ORF, likely allowing the bypass of uORFs.


Subject(s)
5' Untranslated Regions/genetics , Open Reading Frames/genetics , Oryza/genetics , RNA, Messenger/genetics , Regulatory Sequences, Nucleic Acid/genetics , Dissection/methods , Gene Expression Regulation/genetics , Genes, Reporter/genetics , Protein Biosynthesis/genetics
6.
Nucleic Acids Res ; 49(12): 6908-6924, 2021 07 09.
Article in English | MEDLINE | ID: mdl-34133725

ABSTRACT

Reinitiation supporting protein, RISP, interacts with 60S (60S ribosomal subunit) and eIF3 (eukaryotic initiation factor 3) in plants. TOR (target-of-rapamycin) mediates RISP phosphorylation at residue Ser267, favoring its binding to eL24 (60S ribosomal protein L24). In a viral context, RISP, when phosphorylated, binds the CaMV transactivator/ viroplasmin, TAV, to assist in an exceptional mechanism of reinitiation after long ORF translation. Moreover, we show here that RISP interacts with eIF2 via eIF2ß and TOR downstream target 40S ribosomal protein eS6. A RISP phosphorylation knockout, RISP-S267A, binds preferentially eIF2ß, and both form a ternary complex with eIF3a in vitro. Accordingly, transient overexpression in plant protoplasts of RISP-S267A, but not a RISP phosphorylation mimic, RISP-S267D, favors translation initiation. In contrast, RISP-S267D preferentially binds eS6, and, when bound to the C-terminus of eS6, can capture 60S in a highly specific manner in vitro, suggesting that it mediates 60S loading during reinitiation. Indeed, eS6-deficient plants are highly resistant to CaMV due to their reduced reinitiation capacity. Strikingly, an eS6 phosphomimic, when stably expressed in eS6-deficient plants, can fully restore the reinitiation deficiency of these plants in cellular and viral contexts. These results suggest that RISP function in translation (re)initiation is regulated by phosphorylation at Ser267.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Peptide Chain Initiation, Translational , Arabidopsis/virology , Arabidopsis Proteins/genetics , Caulimovirus , Eukaryotic Initiation Factor-2B/metabolism , Eukaryotic Initiation Factor-3/metabolism , Phosphorylation , Ribosomal Protein S6/genetics , Ribosomal Protein S6/metabolism , Ribosome Subunits, Large, Eukaryotic/metabolism
8.
Front Plant Sci ; 8: 1014, 2017.
Article in English | MEDLINE | ID: mdl-28659957

ABSTRACT

The mRNA translation machinery directs protein production, and thus cell growth, according to prevailing cellular and environmental conditions. The target of rapamycin (TOR) signaling pathway-a major growth-related pathway-plays a pivotal role in optimizing protein synthesis in mammals, while its deregulation triggers uncontrolled cell proliferation and the development of severe diseases. In plants, several signaling pathways sensitive to environmental changes, hormones, and pathogens have been implicated in post-transcriptional control, and thus far phytohormones have attracted most attention as TOR upstream regulators in plants. Recent data have suggested that the coordinated actions of the phytohormone auxin, Rho-like small GTPases (ROPs) from plants, and TOR signaling contribute to translation regulation of mRNAs that harbor upstream open reading frames (uORFs) within their 5'-untranslated regions (5'-UTRs). This review will summarize recent advances in translational regulation of a specific set of uORF-containing mRNAs that encode regulatory proteins-transcription factors, protein kinases and other cellular controllers-and how their control can impact plant growth and development.

9.
EMBO J ; 36(7): 886-903, 2017 04 03.
Article in English | MEDLINE | ID: mdl-28246118

ABSTRACT

Target of rapamycin (TOR) promotes reinitiation at upstream ORFs (uORFs) in genes that play important roles in stem cell regulation and organogenesis in plants. Here, we report that the small GTPase ROP2, if activated by the phytohormone auxin, promotes activation of TOR, and thus translation reinitiation of uORF-containing mRNAs. Plants with high levels of active ROP2, including those expressing constitutively active ROP2 (CA-ROP2), contain high levels of active TOR ROP2 physically interacts with and, when GTP-bound, activates TOR in vitro TOR activation in response to auxin is abolished in ROP-deficient rop2 rop6 ROP4 RNAi plants. GFP-TOR can associate with endosome-like structures in ROP2-overexpressing plants, indicating that endosomes mediate ROP2 effects on TOR activation. CA-ROP2 is efficient in loading uORF-containing mRNAs onto polysomes and stimulates translation in protoplasts, and both processes are sensitive to TOR inhibitor AZD-8055. TOR inactivation abolishes ROP2 regulation of translation reinitiation, but not its effects on cytoskeleton or intracellular trafficking. These findings imply a mode of translation control whereby, as an upstream effector of TOR, ROP2 coordinates TOR function in translation reinitiation pathways in response to auxin.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/enzymology , GTP-Binding Proteins/metabolism , Gene Expression Regulation, Plant , Indoleacetic Acids/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Plant Growth Regulators/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Protein Binding
10.
Front Plant Sci ; 7: 1611, 2016.
Article in English | MEDLINE | ID: mdl-27877176

ABSTRACT

Protein translation is an energy consuming process that has to be fine-tuned at both the cell and organism levels to match the availability of resources. The target of rapamycin kinase (TOR) is a key regulator of a large range of biological processes in response to environmental cues. In this study, we have investigated the effects of TOR inactivation on the expression and regulation of Arabidopsis ribosomal proteins at different levels of analysis, namely from transcriptomic to phosphoproteomic. TOR inactivation resulted in a coordinated down-regulation of the transcription and translation of nuclear-encoded mRNAs coding for plastidic ribosomal proteins, which could explain the chlorotic phenotype of the TOR silenced plants. We have identified in the 5' untranslated regions (UTRs) of this set of genes a conserved sequence related to the 5' terminal oligopyrimidine motif, which is known to confer translational regulation by the TOR kinase in other eukaryotes. Furthermore, the phosphoproteomic analysis of the ribosomal fraction following TOR inactivation revealed a lower phosphorylation of the conserved Ser240 residue in the C-terminal region of the 40S ribosomal protein S6 (RPS6). These results were confirmed by Western blot analysis using an antibody that specifically recognizes phosphorylated Ser240 in RPS6. Finally, this antibody was used to follow TOR activity in plants. Our results thus uncover a multi-level regulation of plant ribosomal genes and proteins by the TOR kinase.

11.
New Phytol ; 211(3): 1020-34, 2016 08.
Article in English | MEDLINE | ID: mdl-27120694

ABSTRACT

Virus interactions with plant silencing and innate immunity pathways can potentially alter the susceptibility of virus-infected plants to secondary infections with nonviral pathogens. We found that Arabidopsis plants infected with Cauliflower mosaic virus (CaMV) or transgenic for CaMV silencing suppressor P6 exhibit increased susceptibility to Pseudomonas syringae pv. tomato (Pst) and allow robust growth of the Pst mutant hrcC-, which cannot deploy effectors to suppress innate immunity. The impaired antibacterial defense correlated with the suppressed oxidative burst, reduced accumulation of the defense hormone salicylic acid (SA) and diminished SA-dependent autophagy. The viral protein domain required for suppression of these plant defense responses is dispensable for silencing suppression but essential for binding and activation of the plant target-of-rapamycin (TOR) kinase which, in its active state, blocks cellular autophagy and promotes CaMV translation. Our findings imply that CaMV P6 is a versatile viral effector suppressing both silencing and innate immunity. P6-mediated suppression of oxidative burst and SA-dependent autophagy may predispose CaMV-infected plants to bacterial infection.


Subject(s)
Arabidopsis/immunology , Arabidopsis/virology , Autophagy/drug effects , Caulimovirus/physiology , Pseudomonas syringae/growth & development , Respiratory Burst , Salicylic Acid/pharmacology , Viral Proteins/metabolism , Arabidopsis/drug effects , Arabidopsis/microbiology , Arabidopsis Proteins/metabolism , Caulimovirus/drug effects , Caulimovirus/pathogenicity , Gene Silencing/drug effects , Immunity, Innate/drug effects , Plant Diseases/microbiology , Plant Diseases/virology , Protein Domains , Pseudomonas syringae/drug effects , Respiratory Burst/drug effects , Sequence Deletion , Viral Proteins/chemistry
12.
EMBO J ; 32(8): 1087-102, 2013 Apr 17.
Article in English | MEDLINE | ID: mdl-23524850

ABSTRACT

Mammalian target-of-rapamycin (mTOR) triggers S6 kinase (S6K) activation to phosphorylate targets linked to translation in response to energy, nutrients, and hormones. Pathways of TOR activation in plants remain unknown. Here, we uncover the role of the phytohormone auxin in TOR signalling activation and reinitiation after upstream open reading frame (uORF) translation, which in plants is dependent on translation initiation factor eIF3h. We show that auxin triggers TOR activation followed by S6K1 phosphorylation at T449 and efficient loading of uORF-mRNAs onto polysomes in a manner sensitive to the TOR inhibitor Torin-1. Torin-1 mediates recruitment of inactive S6K1 to polysomes, while auxin triggers S6K1 dissociation and recruitment of activated TOR instead. A putative target of TOR/S6K1-eIF3h-is phosphorylated and detected in polysomes in response to auxin. In TOR-deficient plants, polysomes were prebound by inactive S6K1, and loading of uORF-mRNAs and eIF3h was impaired. Transient expression of eIF3h-S178D in plant protoplasts specifically upregulates uORF-mRNA translation. We propose that TOR functions in polysomes to maintain the active S6K1 (and thus eIF3h) phosphorylation status that is critical for translation reinitiation.


Subject(s)
Arabidopsis Proteins/metabolism , Eukaryotic Initiation Factor-3/metabolism , Protein Biosynthesis , RNA, Messenger/metabolism , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , TOR Serine-Threonine Kinases/metabolism , Arabidopsis , Indoleacetic Acids/metabolism , Open Reading Frames , Phosphorylation , Polyribosomes/metabolism , Protein Processing, Post-Translational
13.
Proc Natl Acad Sci U S A ; 109(39): 15942-6, 2012 Sep 25.
Article in English | MEDLINE | ID: mdl-23019378

ABSTRACT

Posttranscriptional gene silencing (PTGS) mediated by siRNAs is an evolutionarily conserved antiviral defense mechanism in higher plants and invertebrates. In this mechanism, viral-derived siRNAs are incorporated into the RNA-induced silencing complex (RISC) to guide degradation of the corresponding viral RNAs. In Arabidopsis, a key component of RISC is ARGONAUTE1 (AGO1), which not only binds to siRNAs but also carries the RNA slicer activity. At present little is known about posttranslational mechanisms regulating AGO1 turnover. Here we report that the viral suppressor of RNA silencing protein P0 triggers AGO1 degradation by the autophagy pathway. Using a P0-inducible transgenic line, we observed that AGO1 degradation is blocked by inhibition of autophagy. The engineering of a functional AGO1 fluorescent reporter protein further indicated that AGO1 colocalizes with autophagy-related (ATG) protein 8a (ATG8a) positive bodies when degradation is impaired. Moreover, this pathway also degrades AGO1 in a nonviral context, especially when the production of miRNAs is impaired. Our results demonstrate that a selective process such as ubiquitylation can lead to the degradation of a key regulatory protein such as AGO1 by a degradation process generally believed to be unspecific. We anticipate that this mechanism will not only lead to degradation of AGO1 but also of its associated proteins and eventually small RNAs.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Argonaute Proteins/metabolism , Autophagy , Proteolysis , Arabidopsis/genetics , Arabidopsis/virology , Arabidopsis Proteins/genetics , Argonaute Proteins/genetics , Gene Silencing , MicroRNAs/genetics , MicroRNAs/metabolism , Plant Viruses/genetics , Plant Viruses/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Plants, Genetically Modified/virology , RNA, Plant/genetics , RNA, Plant/metabolism , RNA, Viral/genetics , RNA, Viral/metabolism , RNA-Induced Silencing Complex/genetics , RNA-Induced Silencing Complex/metabolism , Ubiquitination/genetics
14.
PLoS Pathog ; 8(3): e1002568, 2012.
Article in English | MEDLINE | ID: mdl-22396650

ABSTRACT

Rice tungro disease is caused by synergistic interaction of an RNA picorna-like virus Rice tungro spherical virus (RTSV) and a DNA pararetrovirus Rice tungro bacilliform virus (RTBV). It is spread by insects owing to an RTSV-encoded transmission factor. RTBV has evolved a ribosome shunt mechanism to initiate translation of its pregenomic RNA having a long and highly structured leader. We found that a long leader of RTSV genomic RNA remarkably resembles the RTBV leader: both contain several short ORFs (sORFs) and potentially fold into a large stem-loop structure with the first sORF terminating in front of the stem basal helix. Using translation assays in rice protoplasts and wheat germ extracts, we show that, like in RTBV, both initiation and proper termination of the first sORF translation in front of the stem are required for shunt-mediated translation of a reporter ORF placed downstream of the RTSV leader. The base pairing that forms the basal helix is required for shunting, but its sequence can be varied. Shunt efficiency in RTSV is lower than in RTBV. But in addition to shunting the RTSV leader sequence allows relatively efficient linear ribosome migration, which also contributes to translation initiation downstream of the leader. We conclude that RTSV and RTBV have developed a similar, sORF-dependent shunt mechanism possibly to adapt to the host translation system and/or coordinate their life cycles. Given that sORF-dependent shunting also operates in a pararetrovirus Cauliflower mosaic virus and likely in other pararetroviruses that possess a conserved shunt configuration in their leaders it is tempting to propose that RTSV may have acquired shunt cis-elements from RTBV during their co-existence.


Subject(s)
Oryza/virology , Picornaviridae/genetics , Plant Diseases/virology , Ribosomes/genetics , Tungrovirus/genetics , DNA, Viral , Genes, Plant , Host-Pathogen Interactions , Open Reading Frames/genetics , RNA, Viral , Ribosomes/metabolism , Transcription, Genetic
15.
Nucleic Acids Res ; 39(12): 5003-14, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21378120

ABSTRACT

To successfully infect plants, viruses must counteract small RNA-based host defense responses. During infection of Arabidopsis, Cauliflower mosaic pararetrovirus (CaMV) is transcribed into pregenomic 35S and subgenomic 19S RNAs. The 35S RNA is both reverse transcribed and also used as an mRNA with highly structured 600 nt leader. We found that this leader region is transcribed into long sense- and antisense-RNAs and spawns a massive quantity of 21, 22 and 24 nt viral small RNAs (vsRNAs), comparable to the entire complement of host-encoded small-interfering RNAs and microRNAs. Leader-derived vsRNAs were detected bound to the Argonaute 1 (AGO1) effector protein, unlike vsRNAs from other viral regions. Only negligible amounts of leader-derived vsRNAs were bound to AGO4. Genetic evidence showed that all four Dicer-like (DCL) proteins mediate vsRNA biogenesis, whereas the RNA polymerases Pol IV, Pol V, RDR1, RDR2 and RDR6 are not required for this process. Surprisingly, CaMV titers were not increased in dcl1/2/3/4 quadruple mutants that accumulate only residual amounts of vsRNAs. Ectopic expression of CaMV leader vsRNAs from an attenuated geminivirus led to increased accumulation of this chimeric virus. Thus, massive production of leader-derived vsRNAs does not restrict viral replication but may serve as a decoy diverting the silencing machinery from viral promoter and coding regions.


Subject(s)
Arabidopsis/virology , Caulimovirus/genetics , RNA, Small Untranslated/biosynthesis , RNA, Viral/biosynthesis , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Argonaute Proteins , Caulimovirus/physiology , DNA, Viral/biosynthesis , Mutation , Plant Diseases/virology , Ribonuclease III/genetics , Virus Replication
16.
EMBO J ; 30(7): 1343-56, 2011 Apr 06.
Article in English | MEDLINE | ID: mdl-21343906

ABSTRACT

The protein kinase TOR (target-of-rapamycin) upregulates translation initiation in eukaryotes, but initiation restart after long ORF translation is restricted by largely unknown pathways. The plant viral reinitiation factor transactivator-viroplasmin (TAV) exceptionally promotes reinitiation through a mechanism involving retention on 80S and reuse of eIF3 and the host factor reinitiation-supporting protein (RISP) to regenerate reinitiation-competent ribosomal complexes. Here, we show that TAV function in reinitiation depends on physical association with TOR, with TAV-TOR binding being critical for both translation reinitiation and viral fitness. Consistently, TOR-deficient plants are resistant to viral infection. TAV triggers TOR hyperactivation and S6K1 phosphorylation in planta. When activated, TOR binds polyribosomes concomitantly with polysomal accumulation of eIF3 and RISP--a novel and specific target of TOR/S6K1--in a TAV-dependent manner, with RISP being phosphorylated. TAV mutants defective in TOR binding fail to recruit TOR, thereby abolishing RISP phosphorylation in polysomes and reinitiation. Thus, activation of reinitiation after long ORF translation is more complex than previously appreciated, with TOR/S6K1 upregulation being the key event in the formation of reinitiation-competent ribosomal complexes.


Subject(s)
Host-Pathogen Interactions , Protein Biosynthesis , Protein Serine-Threonine Kinases/metabolism , Signal Transduction , Trans-Activators/metabolism , Viral Proteins/metabolism , Arabidopsis , Arabidopsis Proteins , Eukaryotic Initiation Factor-3/metabolism , Immunoprecipitation , Phosphatidylinositol 3-Kinases , Protein Binding , Protein Interaction Mapping , Ribosomes/metabolism , Two-Hybrid System Techniques
17.
EMBO J ; 28(20): 3171-84, 2009 Oct 21.
Article in English | MEDLINE | ID: mdl-19745810

ABSTRACT

The plant viral re-initiation factor transactivator viroplasmin (TAV) activates translation of polycistronic mRNA by a re-initiation mechanism involving translation initiation factor 3 (eIF3) and the 60S ribosomal subunit (60S). QJ;Here, we report a new plant factor-re-initiation supporting protein (RISP)-that enhances TAV function in re-initiation. RISP interacts physically with TAV in vitro and in vivo. Mutants defective in interaction are less active, or inactive, in transactivation and viral amplification. RISP alone can serve as a scaffold protein, which is able to interact with eIF3 subunits a/c and 60S, apparently through the C-terminus of ribosomal protein L24. RISP pre-bound to eIF3 binds 40S, suggesting that RISP enters the translational machinery at the 43S formation step. RISP, TAV and 60S co-localize in epidermal cells of infected plants, and eIF3-TAV-RISP-L24 complex formation can be shown in vitro. These results suggest that RISP and TAV bridge interactions between eIF3-bound 40S and L24 of 60S after translation termination to ensure 60S recruitment during repetitive initiation events on polycistronic mRNA; RISP can thus be considered as a new component of the cell translation machinery.


Subject(s)
Arabidopsis Proteins/metabolism , Caulimovirus/metabolism , Eukaryotic Initiation Factor-3/metabolism , Gene Expression Regulation, Plant , Protein Biosynthesis/physiology , Ribosome Subunits, Large, Eukaryotic/metabolism , Viral Proteins/metabolism , Arabidopsis Proteins/genetics , Caulimovirus/genetics , Caulimovirus/physiology , Models, Biological , Polymerase Chain Reaction , Polyribosomes/metabolism , Protein Binding/genetics , Protein Binding/physiology , Protein Biosynthesis/genetics , Ribosome Subunits, Small, Eukaryotic/metabolism , Two-Hybrid System Techniques , Viral Proteins/genetics
18.
Nucleic Acids Res ; 37(17): 5838-47, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19638424

ABSTRACT

The prototype foamy virus (PFV) is a nonpathogenic retrovirus that shows promise as a vector for gene transfer. The PFV (pre)genomic RNA starts with a long complex leader that can be folded into an elongated hairpin, suggesting an alternative strategy to cap-dependent linear scanning for translation initiation of the downstream GAG open reading frame (ORF). We found that the PFV leader carries several short ORFs (sORFs), with the three 5'-proximal sORFs located upstream of a structural element. Scanning-inhibitory hairpin insertion analysis suggested a ribosomal shunt mechanism, whereby ribosomes start scanning at the leader 5'-end and initiate at the downstream ORF via bypass of the central leader regions, which are inhibitory for scanning. We show that the efficiency of shunting depends strongly on the stability of the structural element located downstream of either sORFs A/A' or sORF B, and on the translation event at the corresponding 5'-proximal sORF. The PFV shunting strategy mirrors that of Cauliflower mosaic virus in plants; however, in mammals shunting can operate in the presence of a less stable structural element, although it is greatly improved by increasing the number of base pairings. At least one shunt configuration was found in primate FV (pre)genomic RNAs.


Subject(s)
5' Untranslated Regions , Peptide Chain Initiation, Translational , RNA, Viral/chemistry , Spumavirus/genetics , Animals , Cell Line , Gene Products, gag/biosynthesis , Gene Products, gag/genetics , Open Reading Frames , Ribosomes/metabolism
19.
Mol Plant Microbe Interact ; 22(4): 381-90, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19271953

ABSTRACT

The Potato mop-top virus (PMTV) genome encodes replicase, movement, and capsid proteins on three different RNA species that are encapsidated within tubular rod-shaped particles. Previously, we showed that the protein produced on translational readthrough (RT) of the coat protein (CP) gene, CP-RT, is associated with one extremity of the virus particles, and that the two RNAs encoding replicase and movement proteins can move long distance in the absence of the third RNA (RNA-CP) that encodes the capsid proteins, CP and CP-RT. Here, we examined the roles of the CP and CP-RT proteins on RNA movement using infectious clones carrying mutations in the CP and CP-RT coding domains. The results showed that, in infections established with mutant RNA-CP expressing CP together with truncated CP-RT, systemic movement of the mutant RNA-CP was inhibited but not the movement of the other two RNAs. Furthermore, RNA-CP long-distance movement was inhibited in a mutant clone expressing only CP in the absence of the CP-RT polypeptide. CP-RT was not necessary for particle assembly because virions were observed in leaf extracts infected with the CP-RT deletion mutants. RNA-CP moved long distance when protein expression was suppressed completely or when CP expression was suppressed so that only CP-RT or truncated CP-RT was expressed. CP-RT but not CP interacted with the movement protein TGB1 in the yeast two-hybrid system. CP-RT and TGB1 were detected by enzyme-linked immunosorbent assay in virus particles and the long-distance movement of RNA-CP was correlated with expression of CP-RT that interacted with TGB1; mutant RNA-CP expressing truncated CP-RT proteins that did not interact with TGB1 formed virions but did not move to upper noninoculated leaves. The results indicate that PMTV RNA-CP can move long distance in two distinct forms: either as a viral ribonucleoprotein complex or as particles that are most likely associated with CP-RT and TGB1.


Subject(s)
Capsid Proteins/metabolism , Nicotiana/virology , Plant Viruses/genetics , RNA Viruses/genetics , RNA, Viral/metabolism , Capsid Proteins/genetics , Enzyme-Linked Immunosorbent Assay , Plant Diseases/virology , Plant Viruses/metabolism , Plant Viruses/physiology , RNA Viruses/metabolism , RNA Viruses/physiology , RNA-Binding Proteins/metabolism , Sequence Deletion , Two-Hybrid System Techniques , Viral Nonstructural Proteins , Virus Assembly
20.
J Virol ; 82(3): 1284-93, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18032484

ABSTRACT

The membrane-spanning protein TGBp3 is one of the three movement proteins (MPs) of Poa semilatent virus. TGBp3 is thought to direct other viral MPs and genomic RNA to peripheral bodies located in close proximity to plasmodesmata. We used the ectopic expression of green fluorescent protein-fused TGBp3 in epidermal cells of Nicotiana benthamiana leaves to study the TGBp3 intracellular trafficking pathway. Treatment with inhibitors was used to reveal that the targeting of TGBp3 to plasmodesmata does not require a functional cytoskeleton or secretory system. In addition, the suppression of endoplasmic reticulum-derived vesicle formation by a dominant negative mutant of small GTPase Sar1 had no detectable effect on TGBp3 trafficking to peripheral bodies. Collectively, these results suggested the involvement of an unconventional pathway in the intracellular transport of TGBp3. The determinants of targeting to plasmodesmata were localized to the C-terminal region of TGBp3, including the conserved hydrophilic and terminal membrane-spanning domains.


Subject(s)
Plant Viral Movement Proteins/metabolism , Plant Viruses/metabolism , RNA Viruses/metabolism , Amino Acid Sequence , Artificial Gene Fusion , Cytoskeletal Proteins/antagonists & inhibitors , Genes, Reporter , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Molecular Sequence Data , Monomeric GTP-Binding Proteins/deficiency , Monomeric GTP-Binding Proteins/genetics , Plant Viral Movement Proteins/chemistry , Plant Viral Movement Proteins/genetics , Plasmodesmata/chemistry , Protein Sorting Signals/genetics , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Sequence Alignment , Nicotiana/virology
SELECTION OF CITATIONS
SEARCH DETAIL
...