Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 220
Filter
1.
Environ Sci Technol Lett ; 11(8): 786-797, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39156923

ABSTRACT

Per- and polyfluoroalkyl substances (PFASs) are a class of synthetic organic chemicals of global concern. A group of 36 scientists and regulators from 18 countries held a hybrid workshop in 2022 in Zürich, Switzerland. The workshop, a sequel to a previous Zürich workshop held in 2017, deliberated on progress in the last five years and discussed further needs for cooperative scientific research and regulatory action on PFASs. This review reflects discussion and insights gained during and after this workshop and summarizes key signs of progress in science and policy, ongoing critical issues to be addressed, and possible ways forward. Some key take home messages include: 1) understanding of human health effects continues to develop dramatically, 2) regulatory guidelines continue to drop, 3) better understanding of emissions and contamination levels is needed in more parts of the world, 4) analytical methods, while improving, still only cover around 50 PFASs, and 5) discussions of how to group PFASs for regulation (including subgroupings) have gathered momentum with several jurisdictions proposing restricting a large proportion of PFAS uses. It was concluded that more multi-group exchanges are needed in the future and that there should be a greater diversity of participants at future workshops.

2.
Science ; 385(6706): 256-258, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39024428

ABSTRACT

Identifying alternatives to PFAS requires weighing trade-offs and uncertainties.

3.
Integr Environ Assess Manag ; 20(4): 1193-1195, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38695264
4.
Environ Sci Technol ; 58(15): 6616-6627, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38569050

ABSTRACT

While the extent of environmental contamination by per- and polyfluoroalkyl substances (PFAS) has mobilized considerable efforts around the globe in recent years, publicly available data on PFAS in Europe were very limited. In an unprecedented experiment of "expert-reviewed journalism" involving 29 journalists and seven scientific advisers, a cross-border collaborative project, the "Forever Pollution Project" (FPP), drew on both scientific methods and investigative journalism techniques such as open-source intelligence (OSINT) and freedom of information (FOI) requests to map contamination across Europe, making public data that previously had existed as "unseen science". The FPP identified 22,934 known contamination sites, including 20 PFAS manufacturing facilities, and 21,426 "presumptive contamination sites", including 13,745 sites presumably contaminated with fluorinated aqueous film-forming foam (AFFF) discharge, 2911 industrial facilities, and 4752 sites related to PFAS-containing waste. Additionally, the FPP identified 231 "known PFAS users", a new category for sites with an intermediate level of evidence of PFAS use and considered likely to be contamination sources. However, the true extent of contamination in Europe remains significantly underestimated due to a lack of comprehensive geolocation, sampling, and publicly available data. This model of knowledge production and dissemination offers lessons for researchers, policymakers, and journalists about cross-field collaborations and data transparency.


Subject(s)
Fluorocarbons , Water Pollutants, Chemical , Fluorocarbons/analysis , Water Pollutants, Chemical/analysis , Environmental Pollution , Europe , Commerce
5.
6.
Int J Hyg Environ Health ; 259: 114378, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38631089

ABSTRACT

Phthalates and the substitute plasticizer DINCH belong to the first group of priority substances investigated by the European Human Biomonitoring Initiative (HBM4EU) to answer policy-relevant questions and safeguard an efficient science-to-policy transfer of results. Human internal exposure levels were assessed using two data sets from all European regions and Israel. The first collated existing human biomonitoring (HBM) data (2005-2019). The second consisted of new data generated in the harmonized "HBM4EU Aligned Studies" (2014-2021) on children and teenagers for the ten most relevant phthalates and DINCH, accompanied by a quality assurance/quality control (QA/QC) program for 17 urinary exposure biomarkers. Exposures differed between countries, European regions, age groups and educational levels. Toxicologically derived Human biomonitoring guidance values (HBM-GVs) were exceeded in up to 5% of the participants of the HBM4EU Aligned Studies. A mixture risk assessment (MRA) including five reprotoxic phthalates (DEHP, DnBP, DiBP, BBzP, DiNP) revealed that for about 17% of the children and teenagers, health risks cannot be excluded. Concern about male reproductive health emphasized the need to include other anti-androgenic substances for MRA. Contaminated food and the use of personal care products were identified as relevant exposure determinants paving the way for new regulatory measures. Time trend analyses verified the efficacy of regulations: especially for the highly regulated phthalates exposure dropped significantly, while levels of the substitutes DINCH and DEHTP increased. The HBM4EU e-waste study, however, suggests that workers involved in e-waste management may be exposed to higher levels of restricted phthalates. Exposure-effect association studies indicated the relevance of a range of endpoints. A set of HBM indicators was derived to facilitate and accelerate science-to-policy transfer. Result indicators allow different groups and regions to be easily compared. Impact indicators allow health risks to be directly interpreted. The presented results enable successful science-to-policy transfer and support timely and targeted policy measures.


Subject(s)
Biological Monitoring , Environmental Pollutants , Phthalic Acids , Plasticizers , Humans , Phthalic Acids/urine , Plasticizers/analysis , Europe , Environmental Pollutants/urine , Adolescent , Child , Environmental Exposure/analysis , Male , Risk Assessment , Female , Adult , Environmental Monitoring/methods
7.
Environ Sci Process Impacts ; 26(2): 269-287, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38231136

ABSTRACT

Fluoropolymers are a group of fluorinated polymers within the broad class of substances known as per- and polyfluoroalkyl substances (PFASs). During their production, a wide array of additional fluorinated organic substances (many PFASs and some not defined as PFASs) are used, formed and emitted to air and water. This study aims to assess, and make an inventory of, all emissions of PFASs and other fluorinated organic substances by the fluoropolymer production industry in Europe using available emission databases and permits. Air emissions of the fluorinated gases (i.e., chlorofluorocarbons, hydrofluorocarbons, hydrochlorofluorocarbons and perfluorocarbons (CFCs, H(C)FCs and PFCs)) by this industry have reportedly decreased between 2007 and 2021 from roughly 500 to 150 tonnes per year. Emissions of fluorosurfactants to air and water have also been reduced significantly. However, large uncertainties remain regarding the emissions of substances that are neither fluorinated gases nor fluorosurfactants but are classified as PFASs, such as polymerization by-products, chain transfer agents and fluorinated solvents. The available data indicate that the release of these substances is not decreasing but remains relatively stable. As this inventory probably underestimates emissions, further research, improved data availability and more harmonized reporting of emissions are necessary to obtain more accurate emission data for these substances. Nevertheless, based on the available data, it is clear that the emissions from fluoropolymer production plants to air and water are still significant and that the production of fluoropolymers continues to introduce persistent substances to the environment.


Subject(s)
Fluorocarbon Polymers , Fluorocarbons , Fluorocarbons/analysis , Europe , Water , Gases
8.
Environ Sci Technol ; 57(48): 19066-19077, 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-37943968

ABSTRACT

Pollution by chemicals and waste impacts human and ecosystem health on regional, national, and global scales, resulting, together with climate change and biodiversity loss, in a triple planetary crisis. Consequently, in 2022, countries agreed to establish an intergovernmental science-policy panel (SPP) on chemicals, waste, and pollution prevention, complementary to the existing intergovernmental science-policy bodies on climate change and biodiversity. To ensure the SPP's success, it is imperative to protect it from conflicts of interest (COI). Here, we (i) define and review the implications of COI, and its relevance for the management of chemicals, waste, and pollution; (ii) summarize established tactics to manufacture doubt in favor of vested interests, i.e., to counter scientific evidence and/or to promote misleading narratives favorable to financial interests; and (iii) illustrate these with selected examples. This analysis leads to a review of arguments for and against chemical industry representation in the SPP's work. We further (iv) rebut an assertion voiced by some that the chemical industry should be directly involved in the panel's work because it possesses data on chemicals essential for the panel's activities. Finally, (v) we present steps that should be taken to prevent the detrimental impacts of COI in the work of the SPP. In particular, we propose to include an independent auditor's role in the SPP to ensure that participation and processes follow clear COI rules. Among others, the auditor should evaluate the content of the assessments produced to ensure unbiased representation of information that underpins the SPP's activities.


Subject(s)
Conflict of Interest , Ecosystem , Humans , Environmental Pollution , Biodiversity
9.
Environ Int ; 180: 108161, 2023 10.
Article in English | MEDLINE | ID: mdl-37758599

ABSTRACT

Food contact materials (FCMs) and food contact articles are ubiquitous in today's globalized food system. Chemicals migrate from FCMs into foodstuffs, so called food contact chemicals (FCCs), but current regulatory requirements do not sufficiently protect public health from hazardous FCCs because only individual substances used to make FCMs are tested and mostly only for genotoxicity while endocrine disruption and other hazard properties are disregarded. Indeed, FCMs are a known source of a wide range of hazardous chemicals, and they likely contribute to highly prevalent non-communicable diseases. FCMs can also include non-intentionally added substances (NIAS), which often are unknown and therefore not subject to risk assessment. To address these important shortcomings, we outline how the safety of FCMs may be improved by (1) testing the overall migrate, including (unknown) NIAS, of finished food contact articles, and (2) expanding toxicological testing beyond genotoxicity to multiple endpoints associated with non-communicable diseases relevant to human health. To identify mechanistic endpoints for testing, we group chronic health outcomes associated with chemical exposure into Six Clusters of Disease (SCOD) and we propose that finished food contact articles should be tested for their impacts on these SCOD. Research should focus on developing robust, relevant, and sensitive in-vitro assays based on mechanistic information linked to the SCOD, e.g., through Adverse Outcome Pathways (AOPs) or Key Characteristics of Toxicants. Implementing this vision will improve prevention of chronic diseases that are associated with hazardous chemical exposures, including from FCMs.


Subject(s)
Food Contamination , Noncommunicable Diseases , Humans , Food Contamination/analysis , Public Health , Food Packaging , Food , Hazardous Substances/toxicity
10.
Environ Sci Technol ; 57(31): 11583-11594, 2023 08 08.
Article in English | MEDLINE | ID: mdl-37494593

ABSTRACT

The Global Monitoring Plan of the Stockholm Convention on Persistent Organic Pollutants (POPs) was established to generate long-term data necessary for evaluating the effectiveness of regulatory measures at a global scale. After 15 years of passive air monitoring (2003-2019), MONET is the first network to produce sufficient data for the analysis of continuous long-term temporal trends of POPs in air across the entire European continent. This study reports long-term concentrations of 20 POPs monitored at 32 sites in 27 European countries. As of January 1, 2019, the concentration ranges (pg/m3) were 1.1-52.8 (∑6PCB), 0.3-8.5 (∑12dl-PCB), 0.007-0.175 (∑17PCDD/F), 0.02-2.2 (∑9PBDE), 0.4-24.7 (BDE 209), 0.5-247 (∑6DDT), 1.7-818 (∑4HCH), 15.8-74.7 (HCB), and 5.9-21.5 (PeCB). Temporal trends indicate that concentrations of most POPs have declined significantly over the past 15 years, with median annual decreases ranging from -8.0 to -11.5% (halving times of 6-8 years) for ∑6PCB, ∑17PCDD/F, HCB, PeCB, and ∑9PBDE. Furthermore, no statistically significant differences were observed in either the trends or the concentrations of specific POPs at sites in Western Europe (WEOG) compared to sites in Central and Eastern Europe (CEE), which suggests relatively uniform compound-specific distribution and removal at the continental scale.


Subject(s)
Air Pollutants , Environmental Pollutants , Polychlorinated Biphenyls , Polychlorinated Dibenzodioxins , Polychlorinated Biphenyls/analysis , Persistent Organic Pollutants , Air Pollutants/analysis , Environmental Monitoring , Europe , Environmental Pollutants/analysis
11.
Science ; 381(6655): 251, 2023 07 21.
Article in English | MEDLINE | ID: mdl-37471534

ABSTRACT

New proposed legislation on "forever" chemicals is under consideration in Europe and the United States, where per- and polyfluoroalkyl substances (PFAS) are a hot topic for regulators and lawmakers. On both sides of the Atlantic, regulation of widely used PFAS has been complex and evolving. Their presence in hundreds of different products-from nonstick cookware to food packaging to firefighting foam-and their persistence in food, drinking water, and the environment have resulted in a pollution problem of unprecedented scale. Recently, for example, it was reported that 45% of the tap water in the United States contains at least one type of PFAS. Because these compounds are so chemically stable that they do not degrade in the environment (including in the human body), PFAS seriously challenge long-established ideas of how chemicals can be used, assessed, and regulated, and it remains to be seen whether the new regulations will solve this problem.


Subject(s)
Environmental Pollution , Fluorocarbons , Hazardous Substances , Persistent Organic Pollutants , Humans , Drinking Water/chemistry , Europe , Fluorocarbons/analysis , Fluorocarbons/toxicity , Food , Environmental Pollution/legislation & jurisprudence , Environmental Pollution/prevention & control , Hazardous Substances/analysis , Hazardous Substances/toxicity , Persistent Organic Pollutants/toxicity
14.
Sci Total Environ ; 877: 162618, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-36907396

ABSTRACT

The EU is planning to restrict the manufacture, placing on the market and use of per- and polyfluoroalkyl substances (PFASs) as a class. For such a broad regulatory approach, a lot of different data are required, including data on the hazardous properties of PFASs. Here, we analyze substances that fulfill the OECD definition of PFASs and that are registered under the regulation on Registration, Evaluation, Authorization, and Restriction of Chemicals (REACH) in the EU to obtain a better data basis for PFASs and to elucidate the range of PFASs on the market in the EU. As of September 2021, at least 531 PFASs had been registered under REACH. Our hazard assessment of the PFASs registered under REACH shows that the currently available data are not sufficient to identify those PFASs that are persistent, bioaccumulative and toxic (PBT) or very persistent and very bioaccumulative (vPvB). Using some basic assumptions - which are 1) PFASs or their metabolites do not mineralize, 2) neutral hydrophobic substances bioaccumulate unless they are metabolized and 3) all chemicals exhibit baseline toxicity, and effect concentrations cannot be above effect concentrations for baseline toxicity - shows that at least 17 of the 177 PFASs with full registration are PBT substances, 14 more than currently identified. Moreover, if mobility is considered as a hazard criterion, at least 19 additional substances will need to be considered hazardous. The regulation of persistent, mobile and toxic (PMT) and very persistent and very mobile (vPvM) substances would therefore also affect PFASs. However, many of the substances that have not been identified as PBT, vPvB, PMT or vPvM are either persistent and toxic, persistent and bioaccumulative or persistent and mobile. The planned PFASs restriction will therefore be important for a more effective regulation of these substances.


Subject(s)
Environmental Pollutants , Fluorocarbons , Environmental Pollutants/analysis , Risk Assessment , Bioaccumulation , Fluorocarbons/toxicity , Fluorocarbons/chemistry
15.
Glob Chang Biol ; 29(12): 3240-3255, 2023 06.
Article in English | MEDLINE | ID: mdl-36943240

ABSTRACT

Climate change, biodiversity loss, and chemical pollution are planetary-scale emergencies requiring urgent mitigation actions. As these "triple crises" are deeply interlinked, they need to be tackled in an integrative manner. However, while climate change and biodiversity are often studied together, chemical pollution as a global change factor contributing to worldwide biodiversity loss has received much less attention in biodiversity research so far. Here, we review evidence showing that the multifaceted effects of anthropogenic chemicals in the environment are posing a growing threat to biodiversity and ecosystems. Therefore, failure to account for pollution effects may significantly undermine the success of biodiversity protection efforts. We argue that progress in understanding and counteracting the negative impact of chemical pollution on biodiversity requires collective efforts of scientists from different disciplines, including but not limited to ecology, ecotoxicology, and environmental chemistry. Importantly, recent developments in these fields have now enabled comprehensive studies that could efficiently address the manifold interactions between chemicals and ecosystems. Based on their experience with intricate studies of biodiversity, ecologists are well equipped to embrace the additional challenge of chemical complexity through interdisciplinary collaborations. This offers a unique opportunity to jointly advance a seminal frontier in pollution ecology and facilitate the development of innovative solutions for environmental protection.


Subject(s)
Ecosystem , Environmental Pollution , Biodiversity , Ecology , Conservation of Natural Resources , Climate Change
16.
Arch Toxicol ; 97(5): 1267-1283, 2023 05.
Article in English | MEDLINE | ID: mdl-36952002

ABSTRACT

The assessment of persistence (P), bioaccumulation (B), and toxicity (T) of a chemical is a crucial first step at ensuring chemical safety and is a cornerstone of the European Union's chemicals regulation REACH (Registration, Evaluation, Authorization, and Restriction of Chemicals). Existing methods for PBT assessment are overly complex and cumbersome, have produced incorrect conclusions, and rely heavily on animal-intensive testing. We explore how new-approach methodologies (NAMs) can overcome the limitations of current PBT assessment. We propose two innovative hazard indicators, termed cumulative toxicity equivalents (CTE) and persistent toxicity equivalents (PTE). Together they are intended to replace existing PBT indicators and can also accommodate the emerging concept of PMT (where M stands for mobility). The proposed "toxicity equivalents" can be measured with high throughput in vitro bioassays. CTE refers to the toxic effects measured directly in any given sample, including single chemicals, substitution products, or mixtures. PTE is the equivalent measure of cumulative toxicity equivalents measured after simulated environmental degradation of the sample. With an appropriate panel of animal-free or alternative in vitro bioassays, CTE and PTE comprise key environmental and human health hazard indicators. CTE and PTE do not require analytical identification of transformation products and mixture components but instead prompt two key questions: is the chemical or mixture toxic, and is this toxicity persistent or can it be attenuated by environmental degradation? Taken together, the proposed hazard indicators CTE and PTE have the potential to integrate P, B/M and T assessment into one high-throughput experimental workflow that sidesteps the need for analytical measurements and will support the Chemicals Strategy for Sustainability of the European Union.


Subject(s)
Environmental Monitoring , Humans , Environmental Monitoring/methods , Bioaccumulation , European Union , Risk Assessment/methods
19.
Crit Rev Food Sci Nutr ; 63(28): 9425-9435, 2023.
Article in English | MEDLINE | ID: mdl-35585831

ABSTRACT

Food packaging is important for today's globalized food system, but food contact materials (FCMs) can also be a source of hazardous chemicals migrating into foodstuffs. Assessing the impacts of FCMs on human health requires a comprehensive identification of the chemicals they contain, the food contact chemicals (FCCs). We systematically compiled the "database on migrating and extractable food contact chemicals" (FCCmigex) using information from 1210 studies. We found that to date 2881 FCCs have been detected, in a total of six FCM groups (Plastics, Paper & Board, Metal, Multi-materials, Glass & Ceramic, and Other FCMs). 65% of these detected FCCs were previously not known to be used in FCMs. Conversely, of the more than 12'000 FCCs known to be used, only 1013 are included in the FCCmigex database. Plastic is the most studied FCM with 1975 FCCs detected. Our findings expand the universe of known FCCs to 14,153 chemicals. This knowledge contributes to developing non-hazardous FCMs that lead to safer food and support a circular economy.


Subject(s)
Food Contamination , Food Packaging , Humans , Food Contamination/analysis , Hazardous Substances/analysis , Databases, Factual , Plastics
20.
J Expo Sci Environ Epidemiol ; 33(2): 244-254, 2023 03.
Article in English | MEDLINE | ID: mdl-35513587

ABSTRACT

BACKGROUND: Many phthalates are environmental pollutants and toxic to humans. Following phthalate regulations, human exposure to phthalates has globally decreased with time in European countries, the US and Korea. Conversely, exposure to their substitutes DEHT and/or DINCH has increased. In other countries, including China, little is known on the time-trends in human exposure to these plasticizers. OBJECTIVE: We aimed to estimate time-trends in the urinary concentrations of phthalates, DEHT, and DINCH metabolites, in general population from non-European countries, in the last decade. METHODS: We compiled human biomonitoring (HBM) data from 123 studies worldwide in a database termed "PhthaLit". We analyzed time-trends in the urinary concentrations of the excreted metabolites of various phthalates as well as DEHT and DINCH per metabolite, age group, and country/region, in 2009-2019. Additionally, we compared urinary metabolites levels between continents. RESULTS: We found solid time-trends in adults and/or children from the US, Canada, China and Taiwan. DEHP metabolites decreased in the US and Canada. Conversely in Asia, 5oxo- and 5OH-MEHP (DEHP metabolites) increased in Chinese children. For low-weight phthalates, the trends showed a mixed picture between metabolites and countries. Notably, MnBP (a DnBP metabolite) increased in China. The phthalate substitutes DEHT and DINCH markedly increased in the US. SIGNIFICANCE: We addressed the major question of time-trends in human exposure to phthalates and their substitutes and compared the results in different countries worldwide. IMPACT: Phthalates account for more than 50% of the plasticizer world market. Because of their toxicity, some phthalates have been regulated. In turn, the consumption of non-phthalate substitutes, such as DEHT and DINCH, is growing. Currently, phthalates and their substitutes show high detection percentages in human urine. Concerning time-trends, several studies, mainly in Europe, show a global decrease in phthalate exposure, and an increase in the exposure to phthalate substitutes in the last decade. In this study, we address the important question of time-trends in human exposure to phthalates and their substitutes and compare the results in different countries worldwide.


Subject(s)
Diethylhexyl Phthalate , Environmental Pollutants , Phthalic Acids , Adult , Child , Humans , Phthalic Acids/urine , Environmental Pollutants/urine , Plasticizers/analysis , Plasticizers/metabolism , North America , Environmental Exposure/analysis
SELECTION OF CITATIONS
SEARCH DETAIL