Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 282
Filter
1.
EJNMMI Res ; 14(1): 37, 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38581480

ABSTRACT

BACKGROUND: A new generation of radiolabeled minigastrin analogs delivers low radiation doses to kidneys and are considered relatively stable due to less enzymatic degradation. Nevertheless, relatively low tumor radiation doses in patients indicate limited stability in humans. We aimed at evaluating the effect of sacubitril, an inhibitor of the neutral endopeptidase 1, on the stability and absorbed doses to tumors and organs by the cholecystokinin-2 receptor agonist [177Lu]Lu-PP-F11N in patients. In this prospective phase 0 study eight consecutive patients with advanced medullary thyroid carcinoma and a current somatostatin receptor subtype 2 PET/CT scan were included. Patients received two short infusions of ~ 1 GBq [177Lu]Lu-PP-F11N in an interval of ~ 4 weeks with and without Entresto® pretreatment in an open-label, randomized cross-over order. Entresto® was given at a single oral dose, containing 48.6 mg sacubitril. Adverse events were graded and quantitative SPECT/CT and blood sampling were performed. Absorbed doses to tumors and relevant organs were calculated. RESULTS: Pretreatment with Entresto® showed no additional toxicity and increased the stability of [177Lu]Lu-PP-FF11N in blood significantly (p < 0.001). Median tumor-absorbed doses were 2.6-fold higher after Entresto® pretreatment (0.74 vs. 0.28 Gy/GBq, P = 0.03). At the same time, an increase of absorbed doses to stomach, kidneys and bone marrow was observed, resulting in a tumor-to-organ absorbed dose ratio not significantly different with and without Entresto®. CONCLUSIONS: Premedication with Entresto® results in a relevant stabilization of [177Lu]Lu-PP-FF11N and consecutively increases radiation doses in tumors and organs. Trial registration clinicaltrails.gov, NCT03647657. Registered 20 August 2018.

2.
Cancers (Basel) ; 16(7)2024 Mar 23.
Article in English | MEDLINE | ID: mdl-38610940

ABSTRACT

Transthyretin binders have previously been used to improve the pharmacokinetic properties of small-molecule drug conjugates and could, thus, be utilized for radiopharmaceuticals as an alternative to the widely explored "albumin binder concept". In this study, a novel PSMA ligand modified with a transthyretin-binding entity (TB-01) was synthesized and labeled with lutetium-177 to obtain [177Lu]Lu-PSMA-TB-01. A high and specific uptake of [177Lu]Lu-PSMA-TB-01 was found in PSMA-positive PC-3 PIP cells (69 ± 3% after 4 h incubation), while uptake in PSMA-negative PC-3 flu cells was negligible (<1%). In vitro binding studies showed a 174-fold stronger affinity of [177Lu]Lu-PSMA-TB-01 to transthyretin than to human serum albumin. Biodistribution studies in PC-3 PIP/flu tumor-bearing mice confirmed the enhanced blood retention of [177Lu]Lu-PSMA-TB-01 (16 ± 1% IA/g at 1 h p.i.), which translated to a high tumor uptake (69 ± 13% IA/g at 4 h p.i.) with only slow wash-out over time (31 ± 8% IA/g at 96 h p.i.), while accumulation in the PC-3 flu tumor and non-targeted normal tissue was reasonably low. Further optimization of the radioligand design would be necessary to fine-tune the biodistribution and enable its use for therapeutic purposes. This study was the first of this kind and could motivate the use of the "transthyretin binder concept" for the development of future radiopharmaceuticals.

3.
Pharmaceutics ; 16(3)2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38543193

ABSTRACT

In recent years, nuclear medicine has gained great interest, partly due to the success story of [177Lu]Lu-PSMA-617 (PluvictoTM). Still, in-depth preclinical characterization of radiopharmaceuticals mainly happens at centers that allow working with radioactive material. To support the development of novel radiopharmaceuticals, alternative non-radioactive characterization assays are highly desirable. The aim of this study was to demonstrate that inductively coupled plasma mass spectrometry (ICP-MS) associated with a chromatographic system can serve as a surrogate for the classical high-performance liquid chromatography (HPLC)-radiodetector combination for preclinical in vitro characterization of non-radioactive metal-labeled analogs of radiopharmaceuticals. In this proof-of-concept study, we demonstrate the applicability of HPLC-ICP-MS by assessing the stability of 175Lu- and natGa-labeled prostate-specific membrane antigen (PSMA)-targeting peptidomimetics, single domain antibody (sdAb) conjugates, and monoclonal antibody (mAb) conjugates. 175Lu-labeled DOTAGA-conjugated and natGa-labeled NODAGA-conjugated sdAbs and mAbs showed the highest stability with >90% still intact after 24 h. The peptidomime-tics [175Lu]Lu-PSMA-617 and [natGa]Ga-PSMA-11 showed identical in vitro serum stability as it was reported for their corresponding radioligands with >99% intact species after 24 h incubation in mouse serum, demonstrating the reliability of the method. Hence, the established HPLC-ICP-MS methods can support the development of novel radiopharmaceuticals in a classical pharmaceutical setting.

4.
Chembiochem ; 25(7): e202300819, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38441502

ABSTRACT

Monoacylglycerol lipase (MAGL) plays a crucial role in the degradation of 2-arachidonoylglycerol (2-AG), one of the major endocannabinoids in the brain. Inhibiting MAGL could lead to increased levels of 2-AG, which showed beneficial effects on pain management, anxiety, inflammation, and neuroprotection. In the current study, we report the characterization of an enantiomerically pure (R)-[11C]YH132 as a novel MAGL PET tracer. It demonstrates an improved pharmacokinetic profile compared to its racemate. High in vitro MAGL specificity of (R)-[11C]YH132 was confirmed by autoradiography studies using mouse and rat brain sections. In vivo, (R)-[11C]YH132 displayed a high brain penetration, and high specificity and selectivity toward MAGL by dynamic PET imaging using MAGL knockout and wild-type mice. Pretreatment with a MAGL drug candidate revealed a dose-dependent reduction of (R)-[11C]YH132 accumulation in WT mouse brains. This result validates its utility as a PET probe to assist drug development. Moreover, its potential application in neurodegenerative diseases was explored by in vitro autoradiography using brain sections from animal models of Alzheimer's disease and Parkinson's disease.


Subject(s)
Monoacylglycerol Lipases , Neurodegenerative Diseases , Rats , Mice , Animals , Monoacylglycerol Lipases/metabolism , Neurodegenerative Diseases/diagnostic imaging , Neurodegenerative Diseases/drug therapy , Positron-Emission Tomography/methods , Inflammation , Drug Development , Enzyme Inhibitors/pharmacology
6.
EJNMMI Res ; 14(1): 17, 2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38340184

ABSTRACT

BACKGROUND: Endometriosis is characterized by the ectopic occurrence of endometrial tissue. Though considered benign, endometriotic lesions possess tumor-like properties such as tissue invasion and remodeling of the extracellular matrix. One major clinical hurdle concerning endometriosis is its diagnosis. The diagnostic modalities ultrasound and MRI are often unable to detect all lesions, and a clear correlation between imaging and clinical symptoms is still controversial. Therefore, it was our aim to identify a potential target to image active endometriotic lesions. RESULTS: For our studies, we employed the preclinical radiotracer [111In]In-FnBPA5, which specifically binds to relaxed fibronectin-an extracellular matrix protein with key functions in homeostasis that has been implicated in the pathogenesis of diseases such as cancer and fibrosis. We employed this tracer in biodistribution as well as SPECT/CT studies in mice and conducted immunohistochemical stainings on mouse uterine tissue as well as on patient-derived endometriosis tissue. In biodistribution and SPECT/CT studies using the radiotracer [111In]In-FnBPA5, we found that radiotracer uptake in the myometrium varies with the estrous cycle of the mouse, leading to higher uptake of [111In]In-FnBPA5 during estrogen-dependent phases, which indicates an increased abundance of relaxed fibronectin when estrogen levels are high. Finally, immunohistochemical analysis of patient samples demonstrated that there is preferential relaxation of fibronectin in the proximity of the endometriotic stroma. CONCLUSION: Estrous cycle stages characterized by high estrogen levels result in a higher abundance of relaxed fibronectin in the murine myometrium. This finding together with a first proof-of-concept study employing human endometriosis tissues suggests that relaxed fibronectin could be a potential target for the development of a diagnostic radiotracer targeting endometriotic lesions. With [111In]In-FnBPA5, the matching targeting molecule is in preclinical development.

7.
Alzheimers Res Ther ; 16(1): 9, 2024 01 12.
Article in English | MEDLINE | ID: mdl-38217040

ABSTRACT

BACKGROUND: Metabotropic glutamate receptor 5 (mGluR5) is involved in regulating integrative brain function and synaptic transmission. Aberrant mGluR5 signaling and relevant synaptic failure play a key role in the initial pathophysiological mechanism of Alzheimer's disease (AD). The study aims to investigate the association between mGluR5 availability and AD's biomarkers and cognitive function. METHODS: We examined 35 individuals with mGluR5 tracer [18F]PSS232 to assess mGluR5 availability, and with [18F]Florbetapir PET to assess global amyloid deposition, and [18F]FDG PET to assess glucose metabolism. The plasma neurofilament light (NfL) and p-tau181 levels in a subset of individuals were measured (n = 27). The difference in mGluR5 availability between the AD and normal control (NC) groups was explored. The associations of mGluR5 availability with amyloid deposition, glucose metabolism, gray matter volume (GMV), neuropsychological assessment scores, and plasma biomarkers were analyzed. RESULTS: The mGluR5 availability was significantly reduced in AD patients' hippocampus and parahippocampal gyrus compared to NCs. Global amyloid deposition was positively associated with mGluR5 availability in the AD group and reversely associated in the NC group. The mGluR5 availability was positively correlated with regional glucose metabolism in the overall and stratified analyses. The availability of mGluR5 in the hippocampus and parahippocampal gyrus demonstrated a strong relationship with the GMV of the medial temporal lobe, plasma p-tau181 or NfL levels, and global cognitive performance. CONCLUSIONS: [18F]PSS232 PET can quantify the changes of mGluR5 availability in the progression of AD. mGluR5 availability correlated not only with neuropathological biomarkers of AD but also with neurodegenerative biomarkers and cognitive performance. mGluR5 may be a novel neurodegenerative biomarker, and whether mGluR5 could be a potential therapeutic target for AD needs to be further studied.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Oximes , Pyridines , Humans , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Biomarkers/metabolism , Brain/metabolism , Cognitive Dysfunction/metabolism , Glucose/metabolism , Magnetic Resonance Imaging , Positron-Emission Tomography , Receptor, Metabotropic Glutamate 5/metabolism
8.
Sci Rep ; 13(1): 20662, 2023 11 24.
Article in English | MEDLINE | ID: mdl-38001169

ABSTRACT

The heterogenous treatment response of tumor cells limits the effectiveness of cancer therapy. While this heterogeneity has been linked to cell-to-cell variability within the complex tumor microenvironment, a quantitative biomarker that identifies and characterizes treatment-resistant cell populations is still missing. Herein, we use chromatin organization as a cost-efficient readout of the cells' states to identify subpopulations that exhibit distinct responses to radiotherapy. To this end, we developed a 3D co-culture model of cancer spheroids and patient-derived fibroblasts treated with radiotherapy. Using the model we identified treatment-resistant cells that bypassed DNA damage checkpoints and exhibited an aggressive growth phenotype. Importantly, these cells featured more condensed chromatin which primed them for treatment evasion, as inhibiting chromatin condensation and DNA damage repair mechanisms improved the efficacy of not only radio- but also chemotherapy. Collectively, our work shows the potential of using chromatin organization to cost-effectively study the heterogeneous treatment susceptibility of cells and guide therapeutic design.


Subject(s)
Chromatin , Neoplasms , Humans , Coculture Techniques , Neoplasms/genetics , Neoplasms/radiotherapy , DNA Repair , Biomarkers , Tumor Microenvironment , Spheroids, Cellular , Cell Line, Tumor
9.
Lab Chip ; 23(21): 4652-4663, 2023 10 24.
Article in English | MEDLINE | ID: mdl-37818614

ABSTRACT

Copper-mediated radiofluorination has demonstrated remarkable potential in forming aromatic C-18F bonds of radioligands for positron emission tomography (PET). Achieving optimal results often requires optimization efforts, requiring a substantial amount of radiolabeling precursor and time, severely limiting the experimental throughput. Recently, we successfully showcased the feasibility of performing and optimizing Cu-mediated radiosynthesis on a high-throughput microdroplet platform using the well-known and clinically used radioligand [18F]FDOPA as an illustrative example. In our current work, we optimized the Cu-mediated synthesis of a novel monoacylglycerol lipase (MAGL) PET tracer ([18F]YH149), showing the versatility of droplet-based techniques for early stage tracer development. Across 5 days, we conducted a total of 117 experiments, studying 36 distinct conditions, while utilizing <15 mg of total organoboron precursor. Compared to the original report in which the radiochemical yield (RCY) was 4.4 ± 0.5% (n = 5), the optimized droplet condition provided a substantial improvement in RCY (52 ± 8%, n = 4) and showed excellent radiochemical purity (100%) and molar activity (77-854 GBq µmol-1), using a starting activity of 0.2-1.45 GBq. Furthermore, we showed for the first time a translation of the optimized microscale conditions to a vial-based method. With similar starting activity (0.2-1.44 GBq), the translated synthesis exhibited a comparable RCY of 50 ± 10% (n = 4) while maintaining excellent radiochemical purity (100%) and acceptable molar activity (20-46 GBq µmol-1). The successful translation to vial-based reactions ensures wider applicability of the optimized synthesis by leveraging widely available commercial vial-based synthesis modules.


Subject(s)
Copper , Monoacylglycerol Lipases , Fluorine Radioisotopes/chemistry , Positron-Emission Tomography/methods , Radiopharmaceuticals/chemistry
10.
Cancers (Basel) ; 15(17)2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37686538

ABSTRACT

Introducing an albumin-binding entity into otherwise short-lived radiopharmaceuticals can be an effective means to improve their pharmacokinetic properties due to enhanced blood residence time. In the current study, DOTA-derivatized albumin binders based on 4-(p-iodophenyl)butanoate (DOTA-ALB-1 and DOTA-ALB-3) and 5-(p-iodophenyl)pentanoate entities (DOTA-ALB-24 and DOTA-ALB-25) without and with a hydrophobic 4-(aminomethyl)benzoic acid (AMBA) linker unit, respectively, were synthesized and labeled with lutetium-177 for in vitro and in vivo comparison. Overall, [177Lu]Lu-DOTA-ALB-1 demonstrated ~3-fold stronger in vitro albumin-binding affinity and a longer blood residence time (T50%IA ~8 h) than [177Lu]Lu-DOTA-ALB-24 (T50%IA ~0.8 h). Introducing an AMBA linker enhanced the albumin-binding affinity, resulting in a T50%IA of ~24 h for [177Lu]Lu-DOTA-ALB-3 and ~2 h for [177Lu]Lu-DOTA-ALB-25. The same albumin binders without or with the AMBA linker were incorporated into 6R- and 6S-5-methyltetrahydrofolate-based DOTA-conjugates (177Lu-RedFols). Biodistribution studies in mice performed with both diastereoisomers of [177Lu]Lu-RedFol-1 and [177Lu]Lu-RedFol-3, which comprised the 4-(p-iodophenyl)butanoate moiety, demonstrated a slower accumulation in KB tumors than those of [177Lu]Lu-RedFol-24 and [177Lu]Lu-RedFol-25 with the 5-(p-iodophenyl)pentanoate entity. In all cases, the tumor uptake was high (30-45% IA/g) 24 h after injection. Both diastereoisomers of [177Lu]Lu-RedFol-1 and [177Lu]Lu-RedFol-3 demonstrated high blood retention (3.8-8.7% IA/g, 24 h p.i.) and a 2- to 4-fold lower kidney uptake than the corresponding diastereoisomers of [177Lu]Lu-RedFol-24 and [177Lu]Lu-RedFol-25, which were more rapidly cleared from the blood (<0.2% IA/g, 24 h after injection). Kidney retention of the 6S-diastereoisomers of all 177Lu-RedFols was consistently higher than that of the respective 6R-diastereoisomers, irrespective of the albumin binder and linker unit used. It was demonstrated that the blood clearance data obtained with 177Lu-DOTA-ALBs had predictive value for the blood retention times of the respective folate radioconjugates. The use of these albumin-binding entities without or with an AMBA linker may serve for fine-tuning the blood retention of folate radioconjugates and also other radiopharmaceuticals and, hence, optimize their tissue distribution profiles. Dosimetry estimations based on patient data obtained with one of the most promising folate radioconjugates will be crucial to identify the dose-limiting organ, which will allow for selecting the most suitable folate radioconjugate for therapeutic purposes.

11.
EJNMMI Radiopharm Chem ; 8(1): 21, 2023 Sep 04.
Article in English | MEDLINE | ID: mdl-37665477

ABSTRACT

BACKGROUND: Peptidic radiotracers are preferentially excreted through the kidneys, which often results in high persistent renal retention of radioactivity, limiting or even preventing therapeutic clinical translation of these radiotracers. Exendin-4, which targets the glucagon-like-peptide 1 receptor (GLP-1R) overexpressed in insulinomas and in congenital hyperinsulinism, is an example thereof. The use of the tripeptide MVK, which is readily cleaved between methionine and valine by neprilysin at the renal brush border membrane, already showed promising results in reducing kidney uptake as reported in the literature. Based on our previous findings we were interested how linker variants with multiple copies of the MV-motive influence renal washout of radiolabelled exendin-4. RESULTS: Three exendin-4 derivatives, carrying either one MVK, a MV-MVK or a MVK-MVK linker were synthesized and compared to a reference compound lacking a cleavable linker. In vivo results of a biodistribution in GLP-1R overexpressing tumour bearing mice at 24 h post-injection demonstrated a significant reduction (at least 57%) of renal retention of all 111In-labeled exendin-4 compounds equipped with a cleavable linker compared to the reference compound. While the insertion of the single linker MVK led to a reduction in kidney uptake of 70%, the dual approach with the linker MV-MVK slightly, but not significantly enhanced this effect, with 77% reduction in kidney uptake compared to the reference. In vitro IC50 and cell uptake studies were conducted and demonstrated that though the cleavable linkers negatively influenced the affinity towards the GLP-1R, cell uptake remained largely unaffected, except for the MV-MVK cleavable linker conjugate, which displayed lower cell uptake than the other compounds. Importantly, the tumour uptake in the biodistribution study was not significantly affected with 2.9, 2.5, 3.2 and 1.5% iA/g for radiolabelled Ex4, MVK-Ex4, MV-MVK-Ex4 and MVK-MVK-Ex4, respectively. CONCLUSION: Cleavable linkers are highly efficient in reducing the radioactivity burden in the kidney. Though the dual linker approach using the instillation of MV-MVK or MVK-MVK between exendin-4 and the radiometal chelator did not significantly outperform the single cleavable linker MVK, further structural optimization or the combination of different cleavable linkers could be a stepping stone in reducing radiation-induced nephrotoxicity.

12.
J Nucl Med ; 64(10): 1625-1631, 2023 10.
Article in English | MEDLINE | ID: mdl-37442604

ABSTRACT

The favorable decay characteristics of 161Tb attracted the interest of clinicians in using this novel radionuclide for radioligand therapy (RLT). 161Tb decays with a similar half-life to 177Lu, but beyond the emission of ß--particles and γ-rays, 161Tb also emits conversion and Auger electrons, which may be particularly effective to eliminate micrometastases. The aim of this study was to compare the dosimetry and therapeutic efficacy of 161Tb and 177Lu in tumor-bearing mice using SibuDAB and PSMA-I&T, which differ in their blood residence time and tumor uptake. Methods: [161Tb]Tb-SibuDAB and [161Tb]Tb-PSMA-I&T were evaluated in vitro and investigated in biodistribution, imaging, and therapy studies using PC-3 PIP tumor-bearing mice. The 177Lu-labeled counterparts served for dose calculations and comparison of therapeutic efficacy. The tolerability of RLT in mice was monitored on the basis of body mass, blood plasma parameters, blood cell counts, and the histology of relevant organs and tissues. Results: The prostate-specific membrane antigen (PSMA)-targeting radioligands, irrespective of whether labeled with 161Tb or 177Lu, showed similar in vitro data and comparable tissue distribution profiles. As a result of the albumin-binding properties, [161Tb]Tb/[177Lu]Lu-SibuDAB had an enhanced blood residence time and higher tumor uptake (62%-69% injected activity per gram at 24 h after injection) than [161Tb]Tb/[177Lu]Lu-PSMA-I&T (30%-35% injected activity per gram at 24 h after injection). [161Tb]Tb-SibuDAB inhibited tumor growth more effectively than [161Tb]Tb-PSMA-I&T, as can be ascribed to its 4-fold increased absorbed tumor dose. At any of the applied activities, the 161Tb-based radioligands were therapeutically more effective than their 177Lu-labeled counterparts, as agreed with the approximately 40% increased tumor dose of 161Tb compared with that of 177Lu. Under the given experimental conditions, no obvious adverse events were observed. Conclusion: The data of this study indicate the promising potential of 161Tb in combination with SibuDAB for RLT of prostate cancer. Future clinical studies using 161Tb-based RLT will shed light on a potential clinical benefit of 161Tb over 177Lu.


Subject(s)
Prostatic Neoplasms , Radioisotopes , Male , Humans , Animals , Mice , Tissue Distribution , Cell Line, Tumor , Radioisotopes/therapeutic use , Radioisotopes/chemistry , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/radiotherapy , Prostatic Neoplasms/drug therapy , Albumins/chemistry , Lutetium/therapeutic use , Lutetium/chemistry , Heterocyclic Compounds, 1-Ring/therapeutic use , Radiopharmaceuticals/chemistry , Dipeptides/therapeutic use , Prostate-Specific Antigen/metabolism
14.
J Nucl Med ; 64(7): 1138-1144, 2023 07.
Article in English | MEDLINE | ID: mdl-37201956

ABSTRACT

161Tb is an interesting radionuclide for application in the treatment of neuroendocrine neoplasms' small metastases and single cancer cells because of its conversion and Auger-electron emission. Tb has coordination chemistry similar to that of Lu; therefore, like 177Lu, it can stably radiolabel DOTATOC, one of the leading peptides used for the treatment of neuroendocrine neoplasms. However, 161Tb is a recently developed radionuclide that has not yet been specified for clinical use. Therefore, the aim of the current work was to characterize and specify 161Tb and to develop a protocol for the synthesis and quality control of 161Tb-DOTATOC with a fully automated process conforming to good-manufacturing-practice guidelines, in view of its clinical use. Methods: 161Tb, produced by neutron irradiation of 160Gd in high-flux reactors followed by radiochemical separation from its target material, was characterized regarding its radionuclidic purity, chemical purity, endotoxin level, and radiochemical purity (RCP) in analogy to what is described in the European Pharmacopoeia for no-carrier-added 177Lu. In addition, 161Tb was introduced into a fully automated cassette-module synthesis to produce 161Tb-DOTATOC, as used for 177Lu-DOTATOC. The quality and stability of the produced radiopharmaceutical in terms of identity, RCP, and ethanol and endotoxin content were assessed by means of high-performance liquid chromatography, gas chromatography, and an endotoxin test, respectively. Results: 161Tb produced under the described conditions showed, as the no-carrier-added 177Lu, a pH of 1-2, radionuclidic purity and RCP of more than 99.9%, and an endotoxin level below the permitted range (175 IU/mL), indicating its appropriate quality for clinical use. In addition, an efficient and robust procedure for the automated production and quality control of 161Tb-DOTATOC with clinically applicable specifications and activity levels, that is, 1.0-7.4 GBq in 20 mL, was developed. The radiopharmaceutical's quality control was also developed using chromatographic methods, which confirmed the product's stability (RCP ≥ 95%) over 24 h. Conclusion: The current study demonstrated that 161Tb has appropriate features for clinical use. The developed synthesis protocol guarantees high yields and safe preparation of injectable 161Tb-DOTATOC. The investigated approach could be translated to other DOTA-derivatized peptides; thus, 161Tb could be successfully applied in clinical practice for radionuclide therapy.


Subject(s)
Neoplasms , Radiopharmaceuticals , Humans , Radiopharmaceuticals/chemistry , Isotope Labeling/methods , Radioisotopes/chemistry , Octreotide , Neoplasms/drug therapy
15.
EJNMMI Res ; 13(1): 32, 2023 Apr 19.
Article in English | MEDLINE | ID: mdl-37074529

ABSTRACT

PURPOSE: The angiotensin converting enzyme-2 (ACE2)-entry receptor of SARS-CoV-2-and its homologue, the angiotensin-converting enzyme (ACE), play a pivotal role in maintaining cardiovascular homeostasis. Potential changes in ACE2 expression levels and dynamics after SARS-CoV-2 infection have been barely investigated. The aim of this study was to develop an ACE2-targeting imaging agent as a noninvasive imaging tool to determine ACE2 regulation. METHODS: DOTA-DX600, NODAGA-DX600 and HBED-CC-DX600 were obtained through custom synthesis and labeled with gallium-67 (T1/2 = 3.26 d) as a surrogate radioisotope for gallium-68 (T1/2 = 68 min). ACE2- and ACE-transfected HEK cells were used for the in vitro evaluation of these radiopeptides. The in vivo tissue distribution profiles of the radiopeptides were assessed in HEK-ACE2 and HEK-ACE xenografted mice and imaging studies were performed using SPECT/CT. RESULTS: The highest molar activity was obtained for [67Ga]Ga-HBED-CC-DX600 (60 MBq/nmol), whereas the labeling efficiency of the other peptides was considerably lower (20 MBq/nmol). The radiopeptides were stable over 24 h in saline (> 99% intact peptide). All radiopeptides showed uptake in HEK-ACE2 cells (36-43%) with moderate ACE2-binding affinity (KD value: 83-113 nM), but no uptake in HEK-ACE cells (< 0.1%) was observed. Accumulation of the radiopeptides was observed in HEK-ACE2 xenografts (11-16% IA/g) at 3 h after injection, but only background signals were seen in HEK-ACE xenografts (< 0.5% IA/g). Renal retention was still high 3 h after injection of [67Ga]Ga-DOTA-DX600 and [67Ga]Ga-NODAGA-DX600 (~ 24% IA/g), but much lower for [67Ga]Ga-HBED-CC-DX600 (7.2 ± 2.2% IA/g). SPECT/CT imaging studies confirmed the most favorable target-to-nontarget ratio for [67Ga]Ga-HBED-CC-DX600. CONCLUSIONS: This study demonstrated ACE2 selectivity for all radiopeptides. [67Ga]Ga-HBED-CC-DX600 was revealed as the most promising candidate due to its favorable tissue distribution profile. Importantly, the HBED-CC chelator enabled 67Ga-labeling at high molar activity, which would be essential to obtain images with high signal-to-background contrast to detect (patho)physiological ACE2 expression levels in patients.

16.
J Nucl Med ; 64(6): 873-879, 2023 06.
Article in English | MEDLINE | ID: mdl-36732057

ABSTRACT

α-particle emitters have recently been explored as valuable therapeutic radionuclides. Yet, toxicity to healthy organs and cancer radioresistance limit the efficacy of targeted α-particle therapy (TAT). Identification of the radiation-activated mechanisms that drive cancer cell survival provides opportunities to develop new points for therapeutic interference to improve the efficacy and safety of TAT. Methods: Quantitative phosphoproteomics and matching proteomics followed by the bioinformatics analysis were used to identify alterations in the signaling networks in response to TAT with the 225Ac-labeled minigastrin analog 225Ac-PP-F11N (DOTA-(dGlu)6-Ala-Tyr-Gly-Trp-Nle-Asp-Phe) in A431 cells, which overexpress cholecystokinin B receptor (CCKBR). Western blot analysis and microscopy verified the activation of the selected signaling pathways. Small-molecule inhibitors were used to validate the potential of the radiosensitizing combinatory treatments both in vitro and in A431/CCKBR tumor-bearing nude mice. Results: TAT-induced alterations were involved in DNA damage response, cell cycle regulation, and signal transduction, as well as RNA transcription and processing, cell morphology, and transport. Western blot analysis and microscopy confirmed increased phosphorylations of the key proteins involved in DNA damage response and carcinogenesis, including p53, p53 binding protein 1 (p53BP1), histone deacetylases (HDACs), and H2AX. Inhibition of HDAC class II, ataxia-telangiectasia mutated (ATM), and p38 kinases by TMP269, AZD1390, and SB202190, respectively, sensitized A431/CCKBR cells to 225Ac-PP-F11N. As compared with the control and monotherapies, the combination of 225Ac-PP-F11N with the HDAC inhibitor vorinostat (suberoylanilide hydroxamic acid, SAHA) significantly reduced the viability and increased the DNA damage of A431/CCKBR cells, led to the most pronounced tumor growth inhibition, and extended the mean survival of A431/CCKBR xenografted nude mice. Conclusion: Our study revealed the cellular responses to TAT and demonstrated the radiosensitizing potential of HDAC inhibitors to 225Ac-PP-F11N in CCKBR-positive tumors. This proof-of-concept study recommends development of novel radiosensitizing strategies by targeting TAT-activated and survival-promoting signaling pathways.


Subject(s)
Histone Deacetylase Inhibitors , Tumor Suppressor Protein p53 , Animals , Mice , Histone Deacetylase Inhibitors/pharmacology , Mice, Nude , Cell Line, Tumor , Vorinostat/pharmacology , Signal Transduction , Hydroxamic Acids/pharmacology , Hydroxamic Acids/therapeutic use
17.
Mol Pharm ; 20(4): 2150-2158, 2023 04 03.
Article in English | MEDLINE | ID: mdl-36826437

ABSTRACT

This study addresses the question whether inductively coupled plasma mass spectrometry (ICP-MS) can be used as a method for the in vitro and in vivo characterization of non-radioactive metal conjugates to predict the properties of analogous radiopharmaceuticals. In a "proof-of-concept" study, the prostate-specific membrane antigen (PSMA)-targeting [175Lu]Lu-PSMA-617 and [159Tb]Tb-PSMA-617 were compared with their respective radiolabeled analogues, [177Lu]Lu-PSMA-617 (PLUVICTO, Novartis) and [161Tb]Tb-PSMA-617. ICP-MS and conventional γ-counting of the cell samples revealed almost identical results (<6% absolute difference between the two technologies) for the in vitro uptake and internalization of the (radio)metal conjugates, irrespective of the employed methodology. In vivo, an equal uptake in PSMA-positive PC-3 PIP tumor xenografts was determined 1 h after the injection of [175Lu]Lu-/[177Lu]Lu-PSMA-617 (41 ± 6% ID/g and 44 ± 12% IA/g, respectively) and [159Tb]Tb-/[161Tb]Tb-PSMA-617 (44 ± 5% ID/g and 44 ± 5% IA/g, respectively). It was further revealed that it is crucial to use the same ratios of the (radio)metal-labeled and unlabeled ligands for both methodologies to obtain equal data in organs in which receptor saturation was reached such as the kidneys (12 ± 2% ID/g vs 10 ± 1% IA/g, 1 h after injection). The data of this study demonstrate that the use of high-sensitivity ICP-MS allows reliable and predictive quantification of compounds labeled with stable metal isotopes in cell and tissue samples obtained in preclinical studies. It can, hence, be employed as a valid alternative to the state-of-the-art γ-counting methodology to detect radioactive ligands.


Subject(s)
Prostatic Neoplasms , Radiopharmaceuticals , Male , Humans , Radiopharmaceuticals/chemistry , Prostatic Neoplasms/pathology , Cell Line, Tumor , Antigens, Surface , Glutamate Carboxypeptidase II , Lutetium/chemistry , Heterocyclic Compounds, 1-Ring/chemistry
18.
J Nucl Cardiol ; 30(1): 62-73, 2023 02.
Article in English | MEDLINE | ID: mdl-35484467

ABSTRACT

BACKGROUND: Myocardial perfusion imaging by positron emission tomography (PET-MPI) is the current gold standard for quantification of myocardial blood flow. 18F-flurpiridaz was recently introduced as a valid alternative to currently used PET-MPI probes. Nonetheless, optimum scan duration and time interval for image analysis are currently unknown. Further, it is unclear whether rest/stress PET-MPI with 18F-flurpiridaz is feasible in mice. METHODS: Rest/stress PET-MPI was performed with 18F-flurpiridaz (0.6-3.0 MBq) in 27 mice aged 7-8 months. Regadenoson (0.1 µg/g) was used for induction of vasodilator stress. Kinetic modeling was performed using a metabolite-corrected arterial input function. Image-derived myocardial 18F-flurpiridaz uptake was assessed for different time intervals by placing a volume of interest in the left ventricular myocardium. RESULTS: Tracer kinetics were best described by a two-tissue compartment model. K1 ranged from 6.7 to 20.0 mL·cm-3·min-1, while myocardial volumes of distribution (VT) were between 34.6 and 83.6 mL·cm-3. Of note, myocardial 18F-flurpiridaz uptake (%ID/g) was significantly correlated with K1 at rest and following pharmacological vasodilation for all time intervals assessed. However, while Spearman's coefficients (rs) ranged between 0.478 and 0.681, R2 values were generally low. In contrast, an excellent correlation of myocardial 18F-flurpiridaz uptake with VT was obtained, particularly when employing the averaged myocardial uptake from 20 to 40 min post tracer injection (R2 ≥ 0.98). Notably, K1 and VT were similarly sensitive to pharmacological vasodilation induction. Further, mean stress-to-rest ratios of K1, VT, and %ID/g 18F-flurpiridaz were virtually identical, suggesting that %ID/g 18F-flurpiridaz can be used to estimate coronary flow reserve (CFR) in mice. CONCLUSION: Our findings suggest that a simplified assessment of relative myocardial perfusion and CFR, based on image-derived tracer uptake, is feasible with 18F-flurpiridaz in mice, enabling high-throughput mechanistic CFR studies in rodents.


Subject(s)
Myocardial Perfusion Imaging , Mice , Animals , Myocardial Perfusion Imaging/methods , Feasibility Studies , Positron-Emission Tomography/methods , Myocardium , Image Processing, Computer-Assisted
19.
Cancers (Basel) ; 14(22)2022 Nov 17.
Article in English | MEDLINE | ID: mdl-36428743

ABSTRACT

In the present study, SibuDAB, an albumin-binding PSMA ligand, was investigated in combination with actinium-225 and the data were compared with those of [225Ac]Ac-PSMA-617. In vitro, [225Ac]Ac-SibuDAB and [225Ac]Ac-PSMA-617 showed similar tumor cell uptake and PSMA-binding affinities as their 177Lu-labeled counterparts. The in vitro binding to serum albumin in mouse and human blood plasma, respectively, was 2.8-fold and 1.4-fold increased for [225Ac]Ac-SibuDAB as compared to [177Lu]Lu-SibuDAB. In vivo, this characteristic was reflected by the longer retention of [225Ac]Ac-SibuDAB in the blood than previously seen for [177Lu]Lu-SibuDAB. Similar to [225Ac]Ac-PSMA-617, [225Ac]Ac-SibuDAB was well tolerated at 30 kBq per mouse. Differences in blood cell counts were observed between treated mice and untreated controls, but no major variations were observed between values obtained for [225Ac]Ac-SibuDAB and [225Ac]Ac-PSMA-617. [225Ac]Ac-SibuDAB was considerably more effective to treat PSMA-positive tumor xenografts than [225Ac]Ac-PSMA-617. Only 5 kBq per mouse were sufficient to eradicate the tumors, whereas tumor regrowth was observed for mice treated with 5 kBq [225Ac]Ac-PSMA-617 and only one out of six mice survived until the end of the study. The enhanced therapeutic efficacy of [225Ac]Ac-SibuDAB as compared to that of [225Ac]Ac-PSMA-617 and reasonable safety data qualify this novel radioligand as a candidate for targeted α-therapy of prostate cancer.

20.
Bioorg Med Chem ; 73: 117040, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36202066

ABSTRACT

BACKGROUND: Previously, we have exploited bacterial adhesins-derived fibronectin-binding peptides (FnBPs) for targeting mechanically altered fibronectin (Fn) fibrils within the cancer-associated extra-cellular matrix (ECM). However, despite the ability of FnBP probes to visualize pathological lesions, when labeled with metallic radionuclides and administered for targeted imaging, they exhibit high and persistent retention of radioactivity within the kidneys. Intending to overcome this issue towards a future translation of FnBPs to the clinic, the goal of the present study was to reduce the renal retention of 111In-labelled FnBPs employing dual renal brush border membrane (BBM) enzyme-sensitive Met-Val-Lys-based linkers, enabling a rapid washout of radioactivity from the kidneys. METHODS: Three maleimide-activated NOTA-conjugated brush border-enzyme cleavable linkers equipped with either single or dual consecutive MVK-based cleavable moieties were designed and synthesized. Their respective NOTA-MVK-based FnBPA5.1 conjugates were obtained by means of maleimide-thiol mediated conjugation at the N-terminus of the Fn-binding sequence, radiolabeled with indium-111, and further evaluated in vitro and in vivo in comparison to the control [111In]In-FnBPA5.1. RESULTS: The linker equipped with two MVK sites displayed a two-fold more effective cleavage rate than the single MVK featuring linker in vitro, as revealed by the quantification of the released Met-containing radiometabolites. SPECT/CT imaging and biodistribution studies of the series of FnBPA5.1 radioconjugates performed at 24 h post-injection (p.i.) confirmed the in vitro results, indicating that the renal retention of 111In-labelled FnBPs can be significantly lowered through the interposition of a single MVK-based sequence between the Fn-targeting moiety and the chelating unit (52.75 ± 9.79 vs 92.88 ± 4.85 % iA/g, P < 0.001), and even further reduced by the addition of a second one (down to 34.82 ± 6.04, P < 0.001), with minor influence on the biodistribution in other organs, such as tumors. CONCLUSIONS: In summary, we report here promising 111In-labelled FnBP radiotracers equipped with dual MVK-based cleavable linkers leading to a more effective reduction of renal retention and improved tumor-to-kidney ratios compared to the single MVK-featuring derivative. Our dual MVK strategy is a crucial step towards the clinical translation of mechano-sensory FnBPs and might as well be adopted for other radiopharmaceuticals suffering from persistent renal retention of radioactivity.


Subject(s)
Neoplasms , Radiopharmaceuticals , Adhesins, Bacterial/metabolism , Cell Line, Tumor , Fibronectins/metabolism , Humans , Kidney/metabolism , Maleimides/metabolism , Neoplasms/metabolism , Peptides/metabolism , Radiopharmaceuticals/metabolism , Sulfhydryl Compounds , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...