Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
1.
Nat Protoc ; 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38906985

ABSTRACT

Tissues are dynamic and complex biological systems composed of specialized cell types that interact with each other for proper biological function. To comprehensively characterize and understand the cell circuitry underlying biological processes within tissues, it is crucial to preserve their spatial information. Here we report a simple mounting technique to maximize the area of the tissue to be analyzed, encompassing the whole length of the murine gastrointestinal (GI) tract, from mouth to rectum. Using this method, analysis of the whole murine GI tract can be performed in a single slide not only by means of histological staining, immunohistochemistry and in situ hybridization but also by multiplexed antibody staining and spatial transcriptomic approaches. We demonstrate the utility of our method in generating a comprehensive gene and protein expression profile of the whole GI tract by combining the versatile tissue-rolling technique with a cutting-edge transcriptomics method (Visium) and two cutting-edge proteomics methods (ChipCytometry and CODEX-PhenoCycler) in a systematic and easy-to-follow step-by-step procedure. The entire process, including tissue rolling, processing and sectioning, can be achieved within 2-3 d for all three methods. For Visium spatial transcriptomics, an additional 2 d are needed, whereas for spatial proteomics assays (ChipCytometry and CODEX-PhenoCycler), another 3-4 d might be considered. The whole process can be accomplished by researchers with skills in performing murine surgery, and standard histological and molecular biology methods.

2.
Sci Data ; 11(1): 524, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38778016

ABSTRACT

Datasets consist of measurement data and metadata. Metadata provides context, essential for understanding and (re-)using data. Various metadata standards exist for different methods, systems and contexts. However, relevant information resides at differing stages across the data-lifecycle. Often, this information is defined and standardized only at publication stage, which can lead to data loss and workload increase. In this study, we developed Metadatasheet, a metadata standard based on interviews with members of two biomedical consortia and systematic screening of data repositories. It aligns with the data-lifecycle allowing synchronous metadata recording within Microsoft Excel, a widespread data recording software. Additionally, we provide an implementation, the Metadata Workbook, that offers user-friendly features like automation, dynamic adaption, metadata integrity checks, and export options for various metadata standards. By design and due to its extensive documentation, the proposed metadata standard simplifies recording and structuring of metadata for biomedical scientists, promoting practicality and convenience in data management. This framework can accelerate scientific progress by enhancing collaboration and knowledge transfer throughout the intermediate steps of data creation.


Subject(s)
Data Management , Metadata , Biomedical Research , Data Management/standards , Metadata/standards , Software
3.
Nat Commun ; 15(1): 3554, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38688934

ABSTRACT

Conventional dendritic cells (cDC) play key roles in immune induction, but what drives their heterogeneity and functional specialization is still ill-defined. Here we show that cDC-specific deletion of the transcriptional repressor Bcl6 in mice alters the phenotype and transcriptome of cDC1 and cDC2, while their lineage identity is preserved. Bcl6-deficient cDC1 are diminished in the periphery but maintain their ability to cross-present antigen to CD8+ T cells, confirming general maintenance of this subset. Surprisingly, the absence of Bcl6 in cDC causes a complete loss of Notch2-dependent cDC2 in the spleen and intestinal lamina propria. DC-targeted Bcl6-deficient mice induced fewer T follicular helper cells despite a profound impact on T follicular regulatory cells in response to immunization and mounted diminished Th17 immunity to Citrobacter rodentium in the colon. Our findings establish Bcl6 as an essential transcription factor for subsets of cDC and add to our understanding of the transcriptional landscape underlying cDC heterogeneity.


Subject(s)
Citrobacter rodentium , Dendritic Cells , Proto-Oncogene Proteins c-bcl-6 , Th17 Cells , Animals , Proto-Oncogene Proteins c-bcl-6/genetics , Proto-Oncogene Proteins c-bcl-6/metabolism , Dendritic Cells/immunology , Dendritic Cells/metabolism , Th17 Cells/immunology , Th17 Cells/metabolism , Mice , Citrobacter rodentium/immunology , Mice, Inbred C57BL , Mice, Knockout , T Follicular Helper Cells/immunology , T Follicular Helper Cells/metabolism , CD8-Positive T-Lymphocytes/immunology , Gene Deletion , Spleen/immunology , Spleen/cytology , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism
4.
Elife ; 132024 Mar 25.
Article in English | MEDLINE | ID: mdl-38526524

ABSTRACT

During embryogenesis, the fetal liver becomes the main hematopoietic organ, where stem and progenitor cells as well as immature and mature immune cells form an intricate cellular network. Hematopoietic stem cells (HSCs) reside in a specialized niche, which is essential for their proliferation and differentiation. However, the cellular and molecular determinants contributing to this fetal HSC niche remain largely unknown. Macrophages are the first differentiated hematopoietic cells found in the developing liver, where they are important for fetal erythropoiesis by promoting erythrocyte maturation and phagocytosing expelled nuclei. Yet, whether macrophages play a role in fetal hematopoiesis beyond serving as a niche for maturing erythroblasts remains elusive. Here, we investigate the heterogeneity of macrophage populations in the murine fetal liver to define their specific roles during hematopoiesis. Using a single-cell omics approach combined with spatial proteomics and genetic fate-mapping models, we found that fetal liver macrophages cluster into distinct yolk sac-derived subpopulations and that long-term HSCs are interacting preferentially with one of the macrophage subpopulations. Fetal livers lacking macrophages show a delay in erythropoiesis and have an increased number of granulocytes, which can be attributed to transcriptional reprogramming and altered differentiation potential of long-term HSCs. Together, our data provide a detailed map of fetal liver macrophage subpopulations and implicate macrophages as part of the fetal HSC niche.


Subject(s)
Hematopoiesis , Macrophages , Animals , Mice , Hematopoiesis/genetics , Hematopoietic Stem Cells , Cell Differentiation , Erythropoiesis , Liver , Stem Cell Niche/genetics
5.
Methods Mol Biol ; 2713: 281-296, 2024.
Article in English | MEDLINE | ID: mdl-37639130

ABSTRACT

Macrophages display a high degree of phenotypic diversity and plasticity, which is influenced by their location within the tissue microenvironment. Co-Detection by Indexing (CODEX), a multiplexed imaging technique, allows the simultaneous detection of multiple membrane and cellular markers that enable the accurate identification of tissue-resident hematopoietic and non-hematopoietic cells, while conferring spatial information at a single-cell level. Here we describe the use of CODEX to visualize the phenotypic and spatial heterogeneity of murine tissue-resident macrophages in several organs, and a pipeline to characterize their cellular microenvironments and interactions.


Subject(s)
Diagnostic Imaging , Macrophages , Animals , Mice , Cellular Microenvironment
6.
Immunity ; 56(8): 1761-1777.e6, 2023 08 08.
Article in English | MEDLINE | ID: mdl-37506694

ABSTRACT

Conventional dendritic cells (cDCs) are professional antigen-presenting cells that control the adaptive immune response. Their subsets and developmental origins have been intensively investigated but are still not fully understood as their phenotypes, especially in the DC2 lineage and the recently described human DC3s, overlap with monocytes. Here, using LEGENDScreen to profile DC vs. monocyte lineages, we found sustained expression of FLT3 and CD45RB through the whole DC lineage, allowing DCs and their precursors to be distinguished from monocytes. Using fate mapping models, single-cell RNA sequencing and adoptive transfer, we identified a lineage of murine CD16/32+CD172a+ DC3, distinct from DC2, arising from Ly6C+ monocyte-DC progenitors (MDPs) through Lyz2+Ly6C+CD11c- pro-DC3s, whereas DC2s develop from common DC progenitors (CDPs) through CD7+Ly6C+CD11c+ pre-DC2s. Corresponding DC subsets, developmental stages, and lineages exist in humans. These findings reveal DC3 as a DC lineage phenotypically related to but developmentally different from monocytes and DC2s.


Subject(s)
Monocytes , Stem Cells , Mice , Humans , Animals , Phenotype , Cells, Cultured , Dendritic Cells , Cell Differentiation
7.
Nature ; 618(7966): 818-826, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37316669

ABSTRACT

Correct development and maturation of the enteric nervous system (ENS) is critical for survival1. At birth, the ENS is immature and requires considerable refinement to exert its functions in adulthood2. Here we demonstrate that resident macrophages of the muscularis externa (MMϕ) refine the ENS early in life by pruning synapses and phagocytosing enteric neurons. Depletion of MMϕ before weaning disrupts this process and results in abnormal intestinal transit. After weaning, MMϕ continue to interact closely with the ENS and acquire a neurosupportive phenotype. The latter is instructed by transforming growth factor-ß produced by the ENS; depletion of the ENS and disruption of transforming growth factor-ß signalling result in a decrease in neuron-associated MMϕ associated with loss of enteric neurons and altered intestinal transit. These findings introduce a new reciprocal cell-cell communication responsible for maintenance of the ENS and indicate that the ENS, similarly to the brain, is shaped and maintained by a dedicated population of resident macrophages that adapts its phenotype and transcriptome to the timely needs of the ENS niche.


Subject(s)
Enteric Nervous System , Intestines , Macrophages , Enteric Nervous System/cytology , Enteric Nervous System/growth & development , Enteric Nervous System/physiology , Intestines/innervation , Lymphotoxin-alpha/metabolism , Macrophages/metabolism , Macrophages/physiology , Neurons/physiology , Weaning , Cell Communication , Transcriptome , Phenotype , Phagocytosis , Synapses , Neuronal Plasticity , Gastrointestinal Transit
8.
Bioinformatics ; 39(4)2023 04 03.
Article in English | MEDLINE | ID: mdl-36943334

ABSTRACT

SUMMARY: To allow the comprehensive histological analysis of the whole intestine, it is often rolled to a spiral before imaging. This Swiss-rolling technique facilitates robust experimental procedures, but it limits the possibilities to comprehend changes along the intestine. Here, we present IntestLine, a Shiny-based open-source application for processing imaging data of (rolled) intestinal tissues and subsequent mapping onto a line. The visualization of the mapped data facilitates the assessment of the whole intestine in both proximal-distal and serosa-luminal axis, and enables the observation of location-specific cell types and markers. Accordingly, IntestLine can serve as a tool to characterize the intestine in multi-modal imaging studies. AVAILABILITY AND IMPLEMENTATION: Source code can be found at Zenodo (https://doi.org/10.5281/zenodo.7081864) and GitHub (https://github.com/SchlitzerLab/IntestLine).


Subject(s)
Image Processing, Computer-Assisted , Intestines , Software , Intestines/diagnostic imaging
9.
Nat Rev Immunol ; 23(9): 563-579, 2023 09.
Article in English | MEDLINE | ID: mdl-36922638

ABSTRACT

Macrophages are innate immune cells that form a 3D network in all our tissues, where they phagocytose dying cells and cell debris, immune complexes, bacteria and other waste products. Simultaneously, they produce growth factors and signalling molecules - such activities not only promote host protection in response to invading microorganisms but are also crucial for organ development and homeostasis. There is mounting evidence of macrophages orchestrating fundamental physiological processes, such as blood vessel formation, adipogenesis, metabolism and central and peripheral neuronal function. In parallel, novel methodologies have led to the characterization of tissue-specific macrophages, with distinct subpopulations of these cells showing different developmental trajectories, transcriptional programmes and life cycles. Here, we summarize our growing knowledge of macrophage diversity and how macrophage subsets orchestrate tissue development and function. We further interrelate macrophage ontogeny with their core functions across tissues, that is, the signalling events within the macrophage niche that may control organ functionality during development, homeostasis and ageing. Finally, we highlight the open questions that will need to be addressed by future studies to better understand the tissue-specific functions of distinct macrophage subsets.


Subject(s)
Macrophages , Phagocytosis , Humans , Signal Transduction , Biology
10.
Eur J Immunol ; 53(11): e2249923, 2023 11.
Article in English | MEDLINE | ID: mdl-36623939

ABSTRACT

This article is part of the Dendritic Cell Guidelines article series, which provides a collection of state-of-the-art protocols for the preparation, phenotype analysis by flow cytometry, generation, fluorescence microscopy, and functional characterization of mouse and human dendritic cells (DC) from lymphoid organs and various non-lymphoid tissues. Here, we provide detailed procedures for a variety of multiparameter fluorescence microscopy imaging methods to explore the spatial organization of DC in tissues and to dissect how DC migrate, communicate, and mediate their multiple functional roles in immunity in a variety of tissue settings. The protocols presented here entail approaches to study DC dynamics and T cell cross-talk by intravital microscopy, large-scale visualization, identification, and quantitative analysis of DC subsets and their functions by multiparameter fluorescence microscopy of fixed tissue sections, and an approach to study DC interactions with tissue cells in a 3D cell culture model. While all protocols were written by experienced scientists who routinely use them in their work, this article was also peer-reviewed by leading experts and approved by all co-authors, making it an essential resource for basic and clinical DC immunologists.


Subject(s)
Dendritic Cells , T-Lymphocytes , Humans , Microscopy, Fluorescence/methods
12.
Eur J Immunol ; 53(11): e2249819, 2023 11.
Article in English | MEDLINE | ID: mdl-36512638

ABSTRACT

This article is part of the Dendritic Cell Guidelines article series, which provides a collection of state-of-the-art protocols for the preparation, phenotype analysis by flow cytometry, generation, fluorescence microscopy and functional characterization of mouse and human dendritic cells (DC) from lymphoid organs and various nonlymphoid tissues. DC are sentinels of the immune system present in almost every mammalian organ. Since they represent a rare cell population, DC need to be extracted from organs with protocols that are specifically developed for each tissue. This article provides detailed protocols for the preparation of single-cell suspensions from various mouse nonlymphoid tissues, including skin, intestine, lung, kidney, mammary glands, oral mucosa and transplantable tumors. Furthermore, our guidelines include comprehensive protocols for multiplex flow cytometry analysis of DC subsets and feature top tricks for their proper discrimination from other myeloid cells. With this collection, we provide guidelines for in-depth analysis of DC subsets that will advance our understanding of their respective roles in healthy and diseased tissues. While all protocols were written by experienced scientists who routinely use them in their work, this article was also peer-reviewed by leading experts and approved by all coauthors, making it an essential resource for basic and clinical DC immunologists.


Subject(s)
Dendritic Cells , Skin , Animals , Humans , Flow Cytometry , Myeloid Cells , Kidney , Mammals
13.
Immunity ; 55(12): 2336-2351.e12, 2022 12 13.
Article in English | MEDLINE | ID: mdl-36462502

ABSTRACT

Therapeutic promotion of intestinal regeneration holds great promise, but defining the cellular mechanisms that influence tissue regeneration remains an unmet challenge. To gain insight into the process of mucosal healing, we longitudinally examined the immune cell composition during intestinal damage and regeneration. B cells were the dominant cell type in the healing colon, and single-cell RNA sequencing (scRNA-seq) revealed expansion of an IFN-induced B cell subset during experimental mucosal healing that predominantly located in damaged areas and associated with colitis severity. B cell depletion accelerated recovery upon injury, decreased epithelial ulceration, and enhanced gene expression programs associated with tissue remodeling. scRNA-seq from the epithelial and stromal compartments combined with spatial transcriptomics and multiplex immunostaining showed that B cells decreased interactions between stromal and epithelial cells during mucosal healing. Activated B cells disrupted the epithelial-stromal cross talk required for organoid survival. Thus, B cell expansion during injury impairs epithelial-stromal cell interactions required for mucosal healing, with implications for the treatment of IBD.


Subject(s)
Colitis , Intestinal Mucosa , Animals , Wound Healing , Epithelial Cells/metabolism , Epithelium , Disease Models, Animal
14.
J Cell Biol ; 221(12)2022 12 05.
Article in English | MEDLINE | ID: mdl-36214847

ABSTRACT

Centrosomes play a crucial role during immune cell interactions and initiation of the immune response. In proliferating cells, centrosome numbers are tightly controlled and generally limited to one in G1 and two prior to mitosis. Defects in regulating centrosome numbers have been associated with cell transformation and tumorigenesis. Here, we report the emergence of extra centrosomes in leukocytes during immune activation. Upon antigen encounter, dendritic cells pass through incomplete mitosis and arrest in the subsequent G1 phase leading to tetraploid cells with accumulated centrosomes. In addition, cell stimulation increases expression of polo-like kinase 2, resulting in diploid cells with two centrosomes in G1-arrested cells. During cell migration, centrosomes tightly cluster and act as functional microtubule-organizing centers allowing for increased persistent locomotion along gradients of chemotactic cues. Moreover, dendritic cells with extra centrosomes display enhanced secretion of inflammatory cytokines and optimized T cell responses. Together, these results demonstrate a previously unappreciated role of extra centrosomes for regular cell and tissue homeostasis.


Subject(s)
Centrosome , Dendritic Cells , Cell Cycle Checkpoints , Cell Movement , Centrosome/metabolism , Chemotaxis , Cytokines/metabolism , Dendritic Cells/metabolism , Humans , Microtubule-Organizing Center , Mitosis , Protein Serine-Threonine Kinases/metabolism , T-Lymphocytes/metabolism
15.
Commun Biol ; 5(1): 197, 2022 03 03.
Article in English | MEDLINE | ID: mdl-35241778

ABSTRACT

The nitric oxide-cGMP (NO-cGMP) pathway is of outstanding importance for vascular homeostasis and has multiple beneficial effects in vascular disease. Neointimal hyperplasia after vascular injury is caused by increased proliferation and migration of vascular smooth muscle cells (VSMCs). However, the role of NO-cGMP signaling in human VSMCs in this process is still not fully understood. Here, we investigate the interaction between platelet derived growth factor (PDGF)-signaling, one of the major contributors to neointimal hyperplasia, and the cGMP pathway in vascular smooth muscle, focusing on NO-sensitive soluble guanylyl cyclase (sGC). We show that PDGF reduces sGC expression by activating PI3K and Rac1, which in turn alters Notch ligand signaling. These data are corroborated by gene expression analysis in human atheromas, as well as immunohistological analysis of diseased and injured arteries. Collectively, our data identify the crosstalk between PDGF and NO/sGC signaling pathway in human VSMCs as a potential target to tackle neointimal hyperplasia.


Subject(s)
Guanylate Cyclase , Muscle, Smooth, Vascular , Cyclic GMP/metabolism , Guanylate Cyclase/metabolism , Humans , Muscle, Smooth, Vascular/metabolism , Platelet-Derived Growth Factor/metabolism , Signal Transduction
18.
Nat Immunol ; 22(11): 1382-1390, 2021 11.
Article in English | MEDLINE | ID: mdl-34663978

ABSTRACT

Intergenerational inheritance of immune traits linked to epigenetic modifications has been demonstrated in plants and invertebrates. Here we provide evidence for transmission of trained immunity across generations to murine progeny that survived a sublethal systemic infection with Candida albicans or a zymosan challenge. The progeny of trained mice exhibited cellular, developmental, transcriptional and epigenetic changes associated with the bone marrow-resident myeloid effector and progenitor cell compartment. Moreover, the progeny of trained mice showed enhanced responsiveness to endotoxin challenge, alongside improved protection against systemic heterologous Escherichia coli and Listeria monocytogenes infections. Sperm DNA of parental male mice intravenously infected with the fungus C. albicans showed DNA methylation differences linked to immune gene loci. These results provide evidence for inheritance of trained immunity in mammals, enhancing protection against infections.


Subject(s)
Candida albicans/immunology , Candidiasis/immunology , Escherichia coli Infections/immunology , Escherichia coli/immunology , Heredity , Immunity, Innate/genetics , Listeria monocytogenes/immunology , Listeriosis/immunology , Myeloid Cells/immunology , Animals , Candida albicans/pathogenicity , Candidiasis/genetics , Candidiasis/metabolism , Candidiasis/microbiology , Cells, Cultured , DNA Methylation , Disease Models, Animal , Epigenesis, Genetic , Escherichia coli/pathogenicity , Escherichia coli Infections/genetics , Escherichia coli Infections/metabolism , Escherichia coli Infections/microbiology , Host-Pathogen Interactions , Listeria monocytogenes/pathogenicity , Listeriosis/genetics , Listeriosis/metabolism , Listeriosis/microbiology , Male , Mice, Transgenic , Myeloid Cells/metabolism , Myeloid Cells/microbiology , Spermatozoa/immunology , Spermatozoa/metabolism , Transcription, Genetic
19.
Med ; 2(9): 999-1001, 2021 09 10.
Article in English | MEDLINE | ID: mdl-34522907

ABSTRACT

Innate and adaptive heterologous immunity confers resistance to pathogens. However, its impact on resistance and the course of human infection have remained largely elusive, hampering the use of this phenomenon to enhance vaccine efficacy. In this issue of Med, Mysore et al. show that T cell responses elicited by SARS-CoV-2 infection or vaccination correlate with those induced by MMR and Tdap immunization, revealing the transcriptomic basis of these correlations and find that heterologous adaptive immunity contributes to a better prognosis of COVID-19 disease.1.


Subject(s)
COVID-19 , COVID-19 Vaccines/therapeutic use , Humans , Immunity, Heterologous , SARS-CoV-2 , T-Lymphocytes/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...