Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Anal Chem ; 90(6): 4104-4111, 2018 03 20.
Article in English | MEDLINE | ID: mdl-29473416

ABSTRACT

We report a novel and innovative electrochemical paper-based immunocapture assay (EPIA) to address the need for ultrasensitive detection of emerging pollutants without regulatory status and whose effects on environment and human health are not completely yet understood. In particular, we present the application of this system toward highly sensitive detection of the emerging pollutant ethinyl estradiol (EE2). The EPIA approach is based on the use of paper microzones modified with silica nanoparticles (SNs) and anti-EE2 specific antibodies for capture and preconcentration of EE2 from river water samples. After the preconcentration procedure, the paper microzones are placed onto a screen-printed carbon electrode modified with electrochemically reduced graphene (RG). The bound EE2 is subsequently desorbed adding a diluted solution of sulfuric acid on the paper microzones. Finally, recovered EE2 is electrochemically detected by OSWV. The proposed novel methodology showed an appropriate LOD and linear range for the quantification of EE2 for water samples with different origins. The nonsophisticated equipment required, the adequate recovery values obtained (from 97% to 104%, with a RSD less than 4.9%), and the appropriate LOD and linear range value (0.1 ng L-1 and 0.5-120 ng L-1, respectively) achieved by our immunocapture sensor present significant analytical figures of merit, particularly when the routine quantification of EE2 is considered. In addition, our system was based on electrochemical paper-based technology, which allows obtainment of portable, easy-to-use, inexpensive, and disposable devices. The EPIA can also serve as a general-purpose immunoassay platform applicable to quantitation of other drugs and emerging pollutants in environmental samples.


Subject(s)
Antibodies, Immobilized/chemistry , Electrochemical Techniques/instrumentation , Ethinyl Estradiol/analysis , Immunoassay/instrumentation , Paper , Water Pollutants, Chemical/analysis , Environmental Monitoring/instrumentation , Equipment Design , Limit of Detection , Nanoparticles/chemistry , Rivers/chemistry , Silicon Dioxide/chemistry
2.
Anal Chim Acta ; 723: 27-32, 2012 Apr 20.
Article in English | MEDLINE | ID: mdl-22444569

ABSTRACT

The synthetic estrogen ethinylestradiol (EE2) is an active component of oral contraceptives (OCs), considered as an endocrine disrupting compound (EDC). It is excreted from humans and released via sewage treatment plant effluents into aquatic environments. EDCs are any environmental pollutant chemical that, once incorporated into an organism, affects the hormonal balance of various species including humans. Its presence in the environment is becoming of great importance in water quality. This paper describes the development of an accurate, sensitive and selective method for capture, preconcentration and determination of EE2 present in water samples using: magnetic particles (MPs) as bioaffinity support for the capture and preconcentration of EE2 and a glassy carbon electrode modified with multi-walled carbon nanotubes (MWCNTs/GCE) as detection system. The capture procedure was based on the principle of immunoaffinity, the EE2 being extracted from the sample using the anti-EE2 antibodies (anti-EE2 Ab) which were previously immobilized on MPs. Subsequently the analyte desorption was done employing a sulfuric acid solution and the determination of the EE2 in the pre-concentrated solution was carried out by square wave voltammetry (SWV). This method can be used to determine EE2 in the range of 0.035-70 ng L(-1) with a detection limit (LOD) of 0.01 ng L(-1) and R.S.D.<4.20%. The proposed method has been successfully applied to the determination of EE2 in water samples and it has promising analytical applications for the direct determination of EE2 at trace levels.


Subject(s)
Electrochemical Techniques , Endocrine Disruptors/analysis , Ethinyl Estradiol/analysis , Fresh Water/analysis , Chromatography, Affinity , Electrodes , Endocrine Disruptors/isolation & purification , Ethinyl Estradiol/isolation & purification , Magnetics , Nanotubes, Carbon/chemistry , Rivers/chemistry
3.
Biosens Bioelectron ; 25(6): 1376-81, 2010 Feb 15.
Article in English | MEDLINE | ID: mdl-19931446

ABSTRACT

In this work, we have developed and characterized a novel microfluidic immunoassay methodology for rapid and sensitive quantification of ethinylestradiol (EE2) in river water samples. The detection of EE2 was carried out using a competitive direct immunoassay method based on the use of anti-EE2 polyclonal antibodies immobilized on magnetic microspheres 3-aminopropyl-modified manipulated for an external removable magnet. The EE2 present in the water sample was allowed to compete with EE2-horseradish peroxidase (HPR) conjugated for the immobilized anti-EE2 antibody. The HPR, in the presence of hydrogen peroxide (H(2)O(2)) catalyzes the oxidation of catechol (Q) whose back electrochemical reduction was detected on gold electrode at 0.0 V. The response current obtained from the product of enzymatic reaction is inversely proportional to the amount of EE2 in the water sample. The electrochemical detection can be done within 1 min and total assay time was 30 min. The calculated detection limits for electrochemical detection and the ELISA procedure are 0.09 and 0.32 ng L(-1) respectively and the intra- and inter-assay coefficients of variation were below 5.8%. Our electrochemical immunosensor showed higher sensitivity and lower time consumed than the standard spectrophotometric detection ELISA method, which shows the potential for assessment of EE2 in river water samples.


Subject(s)
Biosensing Techniques/instrumentation , Environmental Monitoring/instrumentation , Ethinyl Estradiol/analysis , Flow Injection Analysis/instrumentation , Immunomagnetic Separation/instrumentation , Microfluidic Analytical Techniques/instrumentation , Rivers/chemistry , Water Pollutants, Chemical/analysis , Equipment Design , Equipment Failure Analysis , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL