Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Nucleic Acids Res ; 52(13): 7987-8002, 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-38874471

ABSTRACT

The conserved Gsx homeodomain (HD) transcription factors specify neural cell fates in animals from flies to mammals. Like many HD proteins, Gsx factors bind A/T-rich DNA sequences prompting the following question: How do HD factors that bind similar DNA sequences in vitro regulate specific target genes in vivo? Prior studies revealed that Gsx factors bind DNA both as a monomer on individual A/T-rich sites and as a cooperative homodimer to two sites spaced precisely 7 bp apart. However, the mechanistic basis for Gsx-DNA binding and cooperativity is poorly understood. Here, we used biochemical, biophysical, structural and modeling approaches to (i) show that Gsx factors are monomers in solution and require DNA for cooperative complex formation, (ii) define the affinity and thermodynamic binding parameters of Gsx2/DNA interactions, (iii) solve a high-resolution monomer/DNA structure that reveals that Gsx2 induces a 20° bend in DNA, (iv) identify a Gsx2 protein-protein interface required for cooperative DNA binding and (v) determine that flexible spacer DNA sequences enhance Gsx2 cooperativity on dimer sites. Altogether, our results provide a mechanistic basis for understanding the protein and DNA structural determinants that underlie cooperative DNA binding by Gsx factors.


Subject(s)
DNA , Homeodomain Proteins , Protein Binding , DNA/metabolism , DNA/chemistry , Homeodomain Proteins/metabolism , Homeodomain Proteins/chemistry , Homeodomain Proteins/genetics , Animals , Binding Sites , Nucleic Acid Conformation , Models, Molecular , Transcription Factors/metabolism , Transcription Factors/chemistry , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , Drosophila Proteins/metabolism , Drosophila Proteins/chemistry , Drosophila Proteins/genetics , Humans , Thermodynamics
2.
bioRxiv ; 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38106145

ABSTRACT

The conserved Gsx homeodomain (HD) transcription factors specify neural cell fates in animals from flies to mammals. Like many HD proteins, Gsx factors bind A/T-rich DNA sequences prompting the question - how do HD factors that bind similar DNA sequences in vitro regulate specific target genes in vivo? Prior studies revealed that Gsx factors bind DNA both as a monomer on individual A/T-rich sites and as a cooperative homodimer to two sites spaced precisely seven base pairs apart. However, the mechanistic basis for Gsx DNA binding and cooperativity are poorly understood. Here, we used biochemical, biophysical, structural, and modeling approaches to (1) show that Gsx factors are monomers in solution and require DNA for cooperative complex formation; (2) define the affinity and thermodynamic binding parameters of Gsx2/DNA interactions; (3) solve a high-resolution monomer/DNA structure that reveals Gsx2 induces a 20° bend in DNA; (4) identify a Gsx2 protein-protein interface required for cooperative DNA binding; and (5) determine that flexible spacer DNA sequences enhance Gsx2 cooperativity on dimer sites. Altogether, our results provide a mechanistic basis for understanding the protein and DNA structural determinants that underlie cooperative DNA binding by Gsx factors, thereby providing a deeper understanding of HD specificity.

3.
Nutrients ; 13(10)2021 Oct 17.
Article in English | MEDLINE | ID: mdl-34684636

ABSTRACT

Gestational high butterfat (HFB) and/or endocrine disruptor exposure was previously found to disrupt spermatogenesis in adulthood. This study addresses the data gap in our knowledge regarding transgenerational transmission of the disruptive interaction between a high-fat diet and endocrine disruptor bisphenol A (BPA). F0 generation Sprague-Dawley rats were fed diets containing butterfat (10 kcal%) and high in butterfat (39 kcal%, HFB) with or without BPA (25 µg/kg body weight/day) during mating and pregnancy. Gestationally exposed F1-generation offspring from different litters were mated to produce F2 offspring, and similarly, F2-generation animals produced F3-generation offspring. One group of F3 male offspring was administered either testosterone plus estradiol-17ß (T + E2) or sham via capsule implants from postnatal days 70 to 210. Another group was naturally aged to 18 months. Combination diets of HFB + BPA in F0 dams, but not single exposure to either, disrupted spermatogenesis in F3-generation adult males in both the T + E2-implanted group and the naturally aged group. CYP19A1 localization to the acrosome and estrogen receptor beta (ERbeta) localization to the nucleus were associated with impaired spermatogenesis. Finally, expression of methyl-CpG-binding domain-3 (MBD3) was consistently decreased in the HFB and HFB + BPA exposed F1 and F3 testes, suggesting an epigenetic component to this inheritance. However, the severe atrophy within testes present in F1 males was absent in F3 males. In conclusion, the HFB + BPA group demonstrated transgenerational inheritance of the impaired spermatogenesis phenotype, but severity was reduced in the F3 generation.


Subject(s)
Benzhydryl Compounds/toxicity , Butter , Dietary Fats/adverse effects , Infertility, Male/chemically induced , Maternal Exposure/adverse effects , Phenols/toxicity , Prenatal Exposure Delayed Effects/chemically induced , Spermatogenesis/drug effects , Animals , Diet, High-Fat/adverse effects , Disease Models, Animal , Endocrine Disruptors/toxicity , Epigenesis, Genetic , Estradiol , Female , Infertility, Male/genetics , Inheritance Patterns , Male , Maternal Nutritional Physiological Phenomena , Pregnancy , Prenatal Exposure Delayed Effects/genetics , Rats , Rats, Sprague-Dawley , Spermatogenesis/genetics , Testis/metabolism
4.
Endocr Relat Cancer ; 24(2): 83-96, 2017 02.
Article in English | MEDLINE | ID: mdl-27998958

ABSTRACT

Humans are increasingly exposed to structural analogues of bisphenol A (BPA), as BPA is being replaced by these compounds in BPA-free consumer products. We have previously shown that chronic and developmental exposure to BPA is associated with increased prostate cancer (PCa) risk in human and animal models. Here, we examine whether exposure of PCa cells (LNCaP, C4-2) to low-dose BPA and its structural analogues (BPS, BPF, BPAF, TBBPA, DMBPA and TMBPA) affects centrosome amplification (CA), a hallmark of cancer initiation and progression. We found that exposure to BPA, BPS, DMBPA and TBBPA, in descending order, increased the number of cells with CA, in a non-monotonic dose-response manner. Furthermore, cells treated with BPA and their analogues initiated centrosome duplication at 8 h after release from serum starvation, significantly earlier in G-1 phase than control cells. This response was attended by earlier release of nucleophosmin from unduplicated centrosomes. BPA-exposed cells exhibited increased expression of cyclin-dependent kinase CDK6 and decreased expression of CDK inhibitors (p21Waf1/CIP1 and p27KIP1). Using specific antagonists for estrogen/androgen receptors, CA in the presence of BPA or its analogues was likely to be mediated via ESR1 signaling. Change in microtubule dynamics was observed on exposure to these analogues, which, for BPA, was accompanied by increased expression of centrosome-associated protein CEP350 Similar to BPA, chronic treatment of cells with DMBPA, but not other analogues, resulted in the enhancement of anchorage-independent growth. We thus conclude that selected BPA analogues, similar to BPA, disrupt centrosome function and microtubule organization, with DMBPA displaying the broadest spectrum of cancer-promoting effects.


Subject(s)
Benzhydryl Compounds/toxicity , Centrosome/drug effects , Endocrine Disruptors/toxicity , Microtubules/drug effects , Phenols/toxicity , Cell Line, Tumor , Gene Expression Regulation, Neoplastic/drug effects , Humans , Male , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL