Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 136
Filter
1.
Nat Metab ; 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39048801

ABSTRACT

Microglia are necessary for central nervous system (CNS) function during development and play roles in ageing, Alzheimer's disease and the response to demyelinating injury1-5. The mitochondrial respiratory chain (RC) is necessary for conventional T cell proliferation6 and macrophage-dependent immune responses7-10. However, whether mitochondrial RC is essential for microglia proliferation or function is not known. We conditionally deleted the mitochondrial complex III subunit Uqcrfs1 (Rieske iron-sulfur polypeptide 1) in the microglia of adult mice to assess the requirement of microglial RC for survival, proliferation and adult CNS function in vivo. Notably, mitochondrial RC function was not required for survival or proliferation of microglia in vivo. RNA sequencing analysis showed that loss of RC function in microglia caused changes in gene expression distinct from aged or disease-associated microglia. Microglia-specific loss of mitochondrial RC function is not sufficient to induce cognitive decline. Amyloid-ß plaque coverage decreased and microglial interaction with amyloid-ß plaques increased in the hippocampus of 5xFAD mice with mitochondrial RC-deficient microglia. Microglia-specific loss of mitochondrial RC function did impair remyelination following an acute, reversible demyelinating event. Thus, mitochondrial respiration in microglia is dispensable for proliferation but is essential to maintain a proper response to CNS demyelinating injury.

2.
J Clin Invest ; 134(13)2024 May 09.
Article in English | MEDLINE | ID: mdl-38722697

ABSTRACT

Newborn mammalian cardiomyocytes quickly transition from a fetal to an adult phenotype that utilizes mitochondrial oxidative phosphorylation but loses mitotic capacity. We tested whether forced reversal of adult cardiomyocytes back to a fetal glycolytic phenotype would restore proliferative capacity. We deleted Uqcrfs1 (mitochondrial Rieske iron-sulfur protein, RISP) in hearts of adult mice. As RISP protein decreased, heart mitochondrial function declined, and glucose utilization increased. Simultaneously, the hearts underwent hyperplastic remodeling during which cardiomyocyte number doubled without cellular hypertrophy. Cellular energy supply was preserved, AMPK activation was absent, and mTOR activation was evident. In ischemic hearts with RISP deletion, new cardiomyocytes migrated into the infarcted region, suggesting the potential for therapeutic cardiac regeneration. RNA sequencing revealed upregulation of genes associated with cardiac development and proliferation. Metabolomic analysis revealed a decrease in α-ketoglutarate (required for TET-mediated demethylation) and an increase in S-adenosylmethionine (required for methyltransferase activity). Analysis revealed an increase in methylated CpGs near gene transcriptional start sites. Genes that were both differentially expressed and differentially methylated were linked to upregulated cardiac developmental pathways. We conclude that decreased mitochondrial function and increased glucose utilization can restore mitotic capacity in adult cardiomyocytes, resulting in the generation of new heart cells, potentially through the modification of substrates that regulate epigenetic modification of genes required for proliferation.


Subject(s)
Cell Proliferation , Mitochondria, Heart , Myocytes, Cardiac , Animals , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Mice , Mitochondria, Heart/metabolism , Mitochondria, Heart/genetics , Mitochondria, Heart/pathology , Mice, Knockout , Electron Transport Complex III/metabolism , Electron Transport Complex III/genetics , Glucose/metabolism
4.
Nat Commun ; 15(1): 1965, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38438382

ABSTRACT

The mitochondrial electron transport chain (ETC) is a highly adaptive process to meet metabolic demands of the cell, and its dysregulation has been associated with diverse clinical pathologies. However, the role and nature of impaired ETC in kidney diseases remains poorly understood. Here, we generate diabetic mice with podocyte-specific overexpression of Ndufs4, an accessory subunit of mitochondrial complex I, as a model investigate the role of ETC integrity in diabetic kidney disease (DKD). We find that conditional male mice with genetic overexpression of Ndufs4 exhibit significant improvements in cristae morphology, mitochondrial dynamics, and albuminuria. By coupling proximity labeling with super-resolution imaging, we also identify the role of cristae shaping protein STOML2 in linking NDUFS4 with improved cristae morphology. Together, we provide the evidence on the central role of NDUFS4 as a regulator of cristae remodeling and mitochondrial function in kidney podocytes. We propose that targeting NDUFS4 represents a promising approach to slow the progression of DKD.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Nephropathies , Male , Animals , Mice , Diabetic Nephropathies/genetics , Diabetes Mellitus, Experimental/genetics , Mitochondrial Membranes , Kidney , Mitochondria , Electron Transport Complex I/genetics
6.
7.
Res Sq ; 2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37461606

ABSTRACT

The mitochondrial electron transport chain (ETC) is a highly adaptive process to meet metabolic demands of the cell, and its dysregulation has been associated with diverse clinical pathologies. However, the role and nature of impaired ETC in kidney diseases remains poorly understood. Here, we generated diabetic mice with podocyte-specific overexpression of Ndufs4, an accessory subunit of mitochondrial complex I, as a model to investigate the role of ETC integrity in diabetic kidney disease (DKD). We find that these conditional mice exhibit significant improvements in cristae morphology, mitochondrial dynamics, and albuminuria. By coupling proximity labeling with super-resolution imaging, we also identify the role of cristae shaping proteins in linking NDUFS4 with improved cristae morphology. Taken together, we discover the central role of NDUFS4 as a powerful regulator of cristae remodeling, respiratory supercomplexes assembly, and mitochondrial ultrastructure in vitro and in vivo. We propose that targeting NDUFS4 represents a promising approach to slow the progression of DKD.

8.
J Biol Chem ; 299(5): 104624, 2023 05.
Article in English | MEDLINE | ID: mdl-36935009

ABSTRACT

Cancer cells experience increased levels of oxidant stress as a consequence of oncogene activation, nucleotide biosynthesis, and growth factor receptor signaling. Mitochondria contribute to this redox stress by generating reactive oxygen species (ROS) along the electron transport chain, which are released to the matrix and the intermembrane space (IMS). Assessing the contribution of mitochondrial ROS in cancer cells is technically difficult, as electron transport chain inhibitors can increase or decrease ROS generation, while they also block oxidative phosphorylation and ATP synthesis. Mitochondria-targeted antioxidant compounds can scavenge ROS in the matrix compartment but do not act on ROS released to the IMS. We assessed the importance of mitochondrial ROS for tumor cell proliferation, survival, and for tumor xenograft growth by stably expressing a hydrogen peroxide (H2O2) scavenger, peroxiredoxin-5, in the mitochondrial IMS (IMS-Prdx5) in 143B osteosarcoma and HCT116 colorectal cancer cell lines. IMS-Prdx5 attenuates hypoxia-induced ROS signaling as assessed independently in cytosol and IMS, HIF-1α stabilization and activity, and cellular proliferation under normoxic and hypoxic culture conditions. It also suppressed tumor growth in vivo. Stable expression of nondegradable HIF-1α only partially rescued proliferation in IMS-Prdx5-expressing cells, indicating that mitochondrial H2O2 signaling contributes to tumor cell proliferation and survival through HIF-dependent and HIF-independent mechanisms.


Subject(s)
Hydrogen Peroxide , Neoplasms , Humans , Cell Proliferation , Hydrogen Peroxide/metabolism , Hypoxia/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Mitochondria/metabolism , Neoplasms/metabolism , Reactive Oxygen Species/metabolism
9.
Sci Adv ; 8(39): eabp8701, 2022 09 30.
Article in English | MEDLINE | ID: mdl-36179023

ABSTRACT

How do neurons match generation of adenosine triphosphate by mitochondria to the bioenergetic demands of regenerative activity? Although the subject of speculation, this coupling is still poorly understood, particularly in neurons that are tonically active. To help fill this gap, pacemaking substantia nigra dopaminergic neurons were studied using a combination of optical, electrophysiological, and molecular approaches. In these neurons, spike-activated calcium (Ca2+) entry through Cav1 channels triggered Ca2+ release from the endoplasmic reticulum, which stimulated mitochondrial oxidative phosphorylation through two complementary Ca2+-dependent mechanisms: one mediated by the mitochondrial uniporter and another by the malate-aspartate shuttle. Disrupting either mechanism impaired the ability of dopaminergic neurons to sustain spike activity. While this feedforward control helps dopaminergic neurons meet the bioenergetic demands associated with sustained spiking, it is also responsible for their elevated oxidant stress and possibly to their decline with aging and disease.


Subject(s)
Calcium , Dopaminergic Neurons , Adenosine Triphosphate/metabolism , Aspartic Acid , Calcium/metabolism , Dopaminergic Neurons/metabolism , Malates/metabolism , Malates/pharmacology , Mitochondria/metabolism , Oxidants , Substantia Nigra/metabolism
10.
Proc Natl Acad Sci U S A ; 119(39): e2202178119, 2022 09 27.
Article in English | MEDLINE | ID: mdl-36122208

ABSTRACT

Acute oxygen (O2) sensing is essential for adaptation of organisms to hypoxic environments or medical conditions with restricted exchange of gases in the lung. The main acute O2-sensing organ is the carotid body (CB), which contains neurosecretory chemoreceptor (glomus) cells innervated by sensory fibers whose activation by hypoxia elicits hyperventilation and increased cardiac output. Glomus cells have mitochondria with specialized metabolic and electron transport chain (ETC) properties. Reduced mitochondrial complex (MC) IV activity by hypoxia leads to production of signaling molecules (NADH and reactive O2 species) in MCI and MCIII that modulate membrane ion channel activity. We studied mice with conditional genetic ablation of MCIII that disrupts the ETC in the CB and other catecholaminergic tissues. Glomus cells survived MCIII dysfunction but showed selective abolition of responsiveness to hypoxia (increased [Ca2+] and transmitter release) with normal responses to other stimuli. Mitochondrial hypoxic NADH and reactive O2 species signals were also suppressed. MCIII-deficient mice exhibited strong inhibition of the hypoxic ventilatory response and altered acclimatization to sustained hypoxia. These data indicate that a functional ETC, with coupling between MCI and MCIV, is required for acute O2 sensing. O2 regulation of breathing results from the integrated action of mitochondrial ETC complexes in arterial chemoreceptors.


Subject(s)
Electron Transport Complex III , Oxygen , Respiration , Animals , Cell Hypoxia/physiology , Electron Transport Complex III/genetics , Electron Transport Complex III/metabolism , Ion Channels , Mice , NAD/metabolism , Oxygen/metabolism
11.
Nat Metab ; 4(6): 651-662, 2022 06.
Article in English | MEDLINE | ID: mdl-35760871

ABSTRACT

Multiple roles of reactive oxygen species (ROS) and their consequences for health and disease are emerging throughout biological sciences. This development has led researchers unfamiliar with the complexities of ROS and their reactions to employ commercial kits and probes to measure ROS and oxidative damage inappropriately, treating ROS (a generic abbreviation) as if it were a discrete molecular entity. Unfortunately, the application and interpretation of these measurements are fraught with challenges and limitations. This can lead to misleading claims entering the literature and impeding progress, despite a well-established body of knowledge on how best to assess individual ROS, their reactions, role as signalling molecules and the oxidative damage that they can cause. In this consensus statement we illuminate problems that can arise with many commonly used approaches for measurement of ROS and oxidative damage, and propose guidelines for best practice. We hope that these strategies will be useful to those who find their research requiring assessment of ROS, oxidative damage and redox signalling in cells and in vivo.


Subject(s)
Antioxidants , Oxidative Stress , Antioxidants/metabolism , Oxidation-Reduction , Reactive Oxygen Species , Signal Transduction
12.
Article in English | MEDLINE | ID: mdl-35510886

ABSTRACT

Ahead of Print article withdrawn by publisher.

14.
Nature ; 599(7886): 650-656, 2021 11.
Article in English | MEDLINE | ID: mdl-34732887

ABSTRACT

Loss of functional mitochondrial complex I (MCI) in the dopaminergic neurons of the substantia nigra is a hallmark of Parkinson's disease1. Yet, whether this change contributes to Parkinson's disease pathogenesis is unclear2. Here we used intersectional genetics to disrupt the function of MCI in mouse dopaminergic neurons. Disruption of MCI induced a Warburg-like shift in metabolism that enabled neuronal survival, but triggered a progressive loss of the dopaminergic phenotype that was first evident in nigrostriatal axons. This axonal deficit was accompanied by motor learning and fine motor deficits, but not by clear levodopa-responsive parkinsonism-which emerged only after the later loss of dopamine release in the substantia nigra. Thus, MCI dysfunction alone is sufficient to cause progressive, human-like parkinsonism in which the loss of nigral dopamine release makes a critical contribution to motor dysfunction, contrary to the current Parkinson's disease paradigm3,4.


Subject(s)
Electron Transport Complex I/genetics , Electron Transport Complex I/metabolism , Parkinsonian Disorders/metabolism , Parkinsonian Disorders/pathology , Animals , Axons/drug effects , Axons/metabolism , Axons/pathology , Cell Death , Dendrites/metabolism , Dendrites/pathology , Disease Models, Animal , Disease Progression , Dopamine/metabolism , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/pathology , Female , Levodopa/pharmacology , Levodopa/therapeutic use , Male , Mice , Motor Skills/drug effects , NADH Dehydrogenase/deficiency , NADH Dehydrogenase/genetics , Parkinsonian Disorders/drug therapy , Parkinsonian Disorders/physiopathology , Phenotype , Substantia Nigra/cytology , Substantia Nigra/drug effects , Substantia Nigra/metabolism
17.
Am J Respir Cell Mol Biol ; 63(5): 652-664, 2020 11.
Article in English | MEDLINE | ID: mdl-32692928

ABSTRACT

Pulmonary hypertension (PH) and right ventricular (RV) hypertrophy frequently develop in patients with hypoxic lung disease. Chronic alveolar hypoxia (CH) promotes sustained pulmonary vasoconstriction and pulmonary artery (PA) remodeling by acting on lung cells, resulting in the development of PH. RV hypertrophy develops in response to PH, but coronary arterial hypoxemia in CH may influence that response by activating HIF-1α (hypoxia-inducible factor 1α) and/or HIF-2α in cardiomyocytes. Indeed, other studies show that the attenuation of PH in CH fails to prevent RV remodeling, suggesting that PH-independent factors regulate RV hypertrophy. Therefore, we examined the role of HIFs in RV remodeling in CH-induced PH. We deleted HIF-1α and/or HIF-2α in hearts of adult mice that were then housed under normoxia or CH (10% O2) for 4 weeks. RNA-sequencing analysis of the RV revealed that HIF-1α and HIF-2α regulate the transcription of largely distinct gene sets during CH. RV systolic pressure increased, and RV hypertrophy developed in CH. The deletion of HIF-1α in smooth muscle attenuated the CH-induced increases in RV systolic pressure but did not decrease hypertrophy. The deletion of HIF-1α in cardiomyocytes amplified RV remodeling; this was abrogated by the simultaneous loss of HIF-2α. CH decreased stroke volume and cardiac output in wild-type but not in HIF-1α-deficient hearts, suggesting that CH may cause cardiac dysfunction via HIF-dependent signaling. Collectively, these data reveal that HIF-1 and HIF-2 act together in RV cardiomyocytes to orchestrate RV remodeling in CH, with HIF-1 playing a protective role rather than driving hypertrophy.


Subject(s)
Hypertension, Pulmonary/etiology , Hypertension, Pulmonary/physiopathology , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia/complications , Ventricular Function, Right/physiology , Ventricular Remodeling/physiology , Animals , Chronic Disease , Gene Deletion , Gene Expression Regulation , Gene Ontology , Hypertension, Pulmonary/genetics , Integrases/metabolism , Mice , Myocytes, Cardiac/metabolism , Pulmonary Artery/pathology , Pulmonary Artery/physiopathology , Transcription, Genetic , Ventricular Function, Right/genetics , Ventricular Remodeling/genetics
20.
Nat Neurosci ; 23(1): 15-20, 2020 01.
Article in English | MEDLINE | ID: mdl-31844313

ABSTRACT

Monoamine oxidase (MAO) metabolizes cytosolic dopamine (DA), thereby limiting auto-oxidation, but is also thought to generate cytosolic hydrogen peroxide (H2O2). We show that MAO metabolism of DA does not increase cytosolic H2O2 but leads to mitochondrial electron transport chain (ETC) activity. This is dependent upon MAO anchoring to the outer mitochondrial membrane and shuttling electrons through the intermembrane space to support the bioenergetic demands of phasic DA release.


Subject(s)
Dopamine/metabolism , Dopaminergic Neurons/metabolism , Electron Transport/physiology , Energy Metabolism/physiology , Monoamine Oxidase/metabolism , Animals , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mitochondria/metabolism , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL