Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 623
Filter
2.
Front Neurosci ; 18: 1400944, 2024.
Article in English | MEDLINE | ID: mdl-39184327

ABSTRACT

The interrelation between acute ischemic stroke, persistent disability, and uncertain prognosis underscores the need for improved methods to predict clinical outcomes. Traditional approaches have largely focused on analysis of clinical metrics, lesion characteristics, and network connectivity, using techniques such as resting-state functional magnetic resonance imaging (rs-fMRI) and diffusion tensor imaging (DTI). However, these methods are not routinely used in acute stroke diagnostics. This study introduces an innovative approach that not only considers the lesion size in relation to the National Institutes of Health Stroke Scale (NIHSS score), but also evaluates the impact of disrupted fibers and their connections to cortical regions by introducing a disconnection value. By identifying fibers traversing the lesion and estimating their number within predefined regions of interest (ROIs) using a normative connectome atlas, our method bypasses the need for individual DTI scans. In our analysis of MRI data (T1 and T2) from 51 patients with acute or subacute subcortical stroke presenting with motor or sensory deficits, we used simple linear regression to assess the explanatory power of lesion size and disconnection value on NIHSS score. Subsequent hierarchical multiple linear regression analysis determined the incremental value of disconnection metrics over lesion size alone in relation to NIHSS score. Our results showed that models incorporating the disconnection value accounted for more variance than those based solely on lesion size (lesion size explained 44% variance, disconnection value 60%). Furthermore, hierarchical regression revealed a significant improvement (p < 0.001) in model fit when adding the disconnection value, confirming its critical role in stroke assessment. Our approach, which integrates a normative connectome to quantify disconnections to cortical regions, provides a significant improvement in assessing the current state of stroke impact compared to traditional measures that focus on lesion size. This is achieved by taking into account the lesion's location and the connectivity of the affected white matter tracts, providing a more comprehensive assessment of stroke severity as reflected in the NIHSS score. Future research should extend the validation of this approach to larger and more diverse populations, with a focus on refining its applicability to clinical assessment and long-term outcome prediction.

3.
Int J Mol Sci ; 25(16)2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39201455

ABSTRACT

Amyloid beta (Aß) plays a major role in the pathogenesis of Alzheimer's disease and, more recently, has been shown to protect against liver fibrosis. Therefore, we studied Aß-42 levels and the expression of genes involved in the generation, degradation, and transport of Aß proteins in liver samples from patients at different stages of metabolic dysfunction-associated liver disease (MASLD) and under steatotic conditions in vitro/in vivo. Amyloid precursor protein (APP), key Aß-metabolizing proteins, and Aß-42 were analyzed using RT-PCR, Western blotting, Luminex analysis in steatotic in vitro and fatty liver mouse models, and TaqMan qRT-PCR analysis in hepatic samples from patients with MASLD. Hepatocytes loaded with palmitic acid induced APP, presenilin, and neprilysin (NEP) expression, which was reversed by oleic acid. Increased APP and NEP, decreased BACE1, and unchanged Aß-42 protein levels were found in the steatotic mouse liver compared to the normal liver. Aß-42 concentrations were low in MASLD samples of patients with moderate to severe fibrosis compared to the livers of patients with mild or no MASLD. Consistent with the reduced Aß-42 levels, the mRNA expression of proteins involved in APP degradation (ADAM9/10/17, BACE2) and Aß-42 cleavage (MMP2/7/9, ACE) was increased. In the steatotic liver, the expression of APP- and Aß-metabolizing proteins is increased, most likely related to oxidative stress, but does not affect hepatic Aß-42 levels. Consistent with our previous findings, low Aß-42 levels in patients with liver fibrosis appear to be caused by the reduced production and enhanced non-amyloidogenic processing of APP.


Subject(s)
Amyloid beta-Peptides , Fatty Liver , Liver , Animals , Humans , Amyloid beta-Peptides/metabolism , Mice , Fatty Liver/metabolism , Fatty Liver/pathology , Liver/metabolism , Liver/pathology , Male , Amyloid beta-Protein Precursor/metabolism , Amyloid beta-Protein Precursor/genetics , Peptide Fragments/metabolism , Mice, Inbred C57BL , Hepatocytes/metabolism , Hepatocytes/pathology , Female , Disease Models, Animal , Neprilysin/metabolism , Neprilysin/genetics
4.
Front Immunol ; 15: 1445944, 2024.
Article in English | MEDLINE | ID: mdl-39131153

ABSTRACT

Background: The hepatitis E virus (HEV) can cause acute viral hepatitis with or without neurological manifestations, and occasionally progresses to chronic infection in immunocompromised individuals. The management of chronic HEV infection in cancer patients may be challenging due to the complex immunological constellation. Furthermore, the diagnostic workflow and the impact on quality of life of neurological HEV manifestations in immunocompromised patients have not been sufficiently delineated previously. Case description: A 61-year-old male with systemically treated chronic lymphocytic leukemia (CLL) experienced a slowly progressive atrophy of the spinal cord due to a chronic HEV infection. Despite continuous antiviral treatment with ribavirin, the patient's neurological condition continued to deteriorate, particularly following subsequent attempts to treat CLL. Treatment with obinutuzumab resulted in acute bowel and urinary retention and a further deterioration of motor skills, prompting the discontinuation of obinutuzumab. The patient's neurological status improved after the administration of intravenous immunoglobulins. Conclusion: This case study provides a comprehensive long-term follow-up of a cancer patient with chronic HEV infection and associated CNS involvement, which resulted in progressive neurological disability over several years. The challenges faced in diagnosing new neurological symptoms in patients undergoing immunosuppressive cancer treatment underscore the need for an interdisciplinary diagnostic approach that includes HEV testing. We propose a diagnostic pathway for future validation in immunocompromised cohorts presenting with neurological symptoms, emphasizing its potential to enhance clinical outcomes.


Subject(s)
Atrophy , Hepatitis E , Leukemia, Lymphocytic, Chronic, B-Cell , Humans , Male , Middle Aged , Leukemia, Lymphocytic, Chronic, B-Cell/complications , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Hepatitis E/drug therapy , Hepatitis E/complications , Hepatitis E/immunology , Spinal Cord/pathology , Immunocompromised Host , Hepatitis E virus/immunology , Antiviral Agents/therapeutic use , Chronic Disease , Antibodies, Monoclonal, Humanized
5.
Br J Pharmacol ; 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39096023

ABSTRACT

BACKGROUND AND PURPOSE: The ATP-dependent biliary efflux transporter ABCC2, also known as multidrug resistance protein 2 (MRP2), is essential for the cellular disposition and detoxification of various xenobiotics including drugs as well as endogenous metabolites. Common functionally relevant ABCC2 genetic variants significantly alter drug responses and contribute to side effects. The aim of this study was to determine functional consequences of rare variants identified in subjects with European ancestry using in silico tools and in vitro analyses. EXPERIMENTAL APPROACH: Targeted next-generation sequencing of the ABCC2 gene was used to identify novel variants in European subjects (n = 143). Twenty-six in silico tools were used to predict functional consequences. For biological validation, transport assays were carried out with membrane vesicles prepared from cell lines overexpressing the newly identified ABCC2 variants and estradiol ß-glucuronide and carboxydichlorofluorescein as the substrates. KEY RESULTS: Three novel rare ABCC2 missense variants were identified (W227R, K402T, V489F). Twenty-five in silico tools predicted W227R as damaging and one as potentially damaging. Prediction of functional consequences was not possible for K402T and V489F and for the common linked variants V1188E/C1515Y. Characterisation in vitro showed increased function of W227R, V489F and V1188E/C1515Y for both substrates, whereas K402T function was only increased for carboxydichlorofluorescein. CONCLUSION AND IMPLICATIONS: In silico tools were unable to accurately predict the substrate-dependent increase in function of ABCC2 missense variants. In vitro biological studies are required to accurately determine functional activity to avoid misleading consequences for drug therapy.

6.
Arch Toxicol ; 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39136732

ABSTRACT

Despite extensive research on the metabolism of polychlorinated biphenyls (PCBs), knowledge gaps persist regarding their isoform-specific biotransformation pathways. This study aimed to elucidate the role of different cytochrome P450 enzymes in PCB metabolism, focusing on WHO-congeners 2,4,4'-trichlorobiphenyl (PCB28), 2,2',5,5'-tetrachlorobiphenyl (PCB52), and 2,2',4,5,5'-pentachlorobiphenyl (PCB101). Utilizing engineered HEK293 cell lines, we investigated the in vitro metabolism of these PCBs by CYP1A2, CYP2C8, CYP2C9, CYP3A4, CYP2A6, and CYP2E1, revealing robust production of hydroxylated metabolites. Our results show that CYP2A6 plays a major role in the metabolism of these congeners responsible for predominant formation of para-position hydroxylated metabolites, with concentrations reaching up to 1.61 µg/L (5,89 nM) for PCB28, 316.98 µg/L (1,03 µM) for PCB52, and 151.1 µg/L (441 nM) for PCB101 from a 20 µM parent PCB concentration. Moreover, concentration-dependent cytotoxic and cytostatic effects induced by reactive intermediates of the PCB hydroxylation pathway were observed in HEK293CYP2A6 cells, for all three congeners tested. CYP2A6 was specifically capable of activating PCBs 28 and 101 to genotoxic metabolites which produced genetic defects which were propagated to subsequent generations, potentially contributing to carcinogenesis. In a clinical study examining CYP2A6 enzyme activity in formerly exposed individuals with elevated internal PCB levels, a participant with increased enzyme activity showed a direct association between the phenotypic activity of CYP2A6 and the metabolism of PCB28, confirming the role of CYP2A6 in the in vivo metabolism of PCB28 also in humans. These results altogether reinforce the concept that CYP2A6 plays a pivotal role in PCB congener metabolism and suggest its significance in human health, particularly in the metabolism of lower chlorinated, volatile PCB congeners.

7.
Clin Pharmacol Ther ; 2024 07 01.
Article in English | MEDLINE | ID: mdl-38951961

ABSTRACT

Beta-blockers are widely used medications for a variety of indications, including heart failure, myocardial infarction, cardiac arrhythmias, and hypertension. Genetic variability in pharmacokinetic (e.g., CYP2D6) and pharmacodynamic (e.g., ADRB1, ADRB2, ADRA2C, GRK4, GRK5) genes have been studied in relation to beta-blocker exposure and response. We searched and summarized the strength of the evidence linking beta-blocker exposure and response with the six genes listed above. The level of evidence was high for associations between CYP2D6 genetic variation and both metoprolol exposure and heart rate response. Evidence indicates that CYP2D6 poor metabolizers experience clinically significant greater exposure and lower heart rate in response to metoprolol compared with those who are not poor metabolizers. Therefore, we provide therapeutic recommendations regarding genetically predicted CYP2D6 metabolizer status and metoprolol therapy. However, there was insufficient evidence to make therapeutic recommendations for CYP2D6 and other beta-blockers or for any beta-blocker and the other five genes evaluated (updates at www.cpicpgx.org).

8.
Mult Scler Relat Disord ; 88: 105704, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38878625

ABSTRACT

BACKGROUND: The current approval of oral cladribine covers four years, with two treatment courses in the first two years, followed by two treatment-free years. For decision-making in year 5, experts recommend three scenarios: Extending the treatment-free period, retreatment with cladribine, or therapy switch. OBJECTIVE: To assess the implementation of the three year-5-scenarios in clinical practice in a large multicentric real-world cohort in Germany. METHODS: Data from adult patients diagnosed with highly active RMS (first dose between 8/2017 and 8/2018) were included. The primary outcome was the percentages of patients who remained treatment-free in year 5, were retreated with cladribine, or switched to another therapy. RESULTS: In total, 187 patients (75 % female, mean age 38.6 years, median EDSS 2.5, 21 % DMT-naive) were evaluated. Overall, 27 (14 %) switched treatment within year 1-4, 36 (19 %) continued therapy with cladribine tablets in year 5, and 8 (4 %) switched therapy in year 5. All other patients (n = 118, 63 %) continued to be monitored without therapy in year 5. CONCLUSION: The recommended three treatment scenarios in year 5 appear to be feasible in clinical practice. Treatment-free structured monitoring is the most frequently applied strategy, highly likely due to the prospect of continuing low disease activity under cladribine treatment.


Subject(s)
Cladribine , Immunosuppressive Agents , Humans , Cladribine/therapeutic use , Female , Male , Adult , Germany , Immunosuppressive Agents/therapeutic use , Middle Aged , Cohort Studies , Multiple Sclerosis/drug therapy , Drug Substitution
9.
Acta Obstet Gynecol Scand ; 103(8): 1530-1540, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38877646

ABSTRACT

INTRODUCTION: Prenatal exposure to supraphysiological glucocorticoid (GC) levels may lead to long-lasting developmental changes in numerous biological systems. Our prior study identified an association between prenatal GC prophylaxis and reduced cognitive performance, electrocortical changes, and altered autonomic nervous system (ANS) activity in children aged 8-9 years. This follow-up study aimed to examine whether these findings persisted into adolescence. MATERIAL AND METHODS: Prospective observational follow-up study involving twenty-one 14- to 15-year-old adolescents born to mothers who received betamethasone for induction of fetal lung maturation in threatened preterm birth, but who were born with a normal weight appropriate for their gestational age (median 37+4 gestational weeks). Thirty-five children not exposed to betamethasone served as the reference group (median 37+6 gestational weeks). The primary endpoint was cognitive performance, measured by intelligence quotient (IQ). Key secondary endpoints included symptoms of attention-deficit/hyperactivity disorder (ADHD) and metabolic markers. Additionally, we determined electrocortical (electroencephalogram), hypothalamus-pituitary-adrenal axis (HPAA), and ANS activity in response to a standardized stress paradigm. RESULTS: No statistically significant group difference was observed in global IQ (adjusted mean: betamethasone 103.9 vs references 105.9, mean difference -2.0, 95% confidence interval [CI]: -7.12 to 3.12, p = 0.44). Similarly, ADHD symptoms, metabolic markers, the overall and stress-induced activity of the HPAA and the ANS did not differ significantly between groups. However, the betamethasone group exhibited reduced electrocortical activity in the frontal brain region (spectral edge frequency-adjusted means: 16.0 Hz vs 17.8 Hz, mean difference -1.83 Hz, 95% CI: -3.21 to -0.45, p = 0.01). CONCLUSIONS: In 14- to 15-year-old adolescents, prenatal GC exposure was not associated with differences in IQ scores or ANS activity compared to unexposed controls. However, decelerated electrocortical activity in the frontal region potentially reflects disturbances in the maturation of cortical and/or subcortical brain structures. The clinical significance of these changes remains unknown. Given the small sample size, selective participation/loss of follow-up and potential residual confounding, these findings should be interpreted cautiously. Further research is required to replicate these results in larger cohorts before drawing firm clinical conclusions.


Subject(s)
Betamethasone , Glucocorticoids , Prenatal Exposure Delayed Effects , Humans , Female , Pregnancy , Adolescent , Glucocorticoids/adverse effects , Follow-Up Studies , Prospective Studies , Male , Hypothalamo-Hypophyseal System/drug effects , Pituitary-Adrenal System/drug effects , Adolescent Development/drug effects , Attention Deficit Disorder with Hyperactivity , Cognition/drug effects
10.
Psychoneuroendocrinology ; 167: 107088, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38924829

ABSTRACT

BACKGROUND: Changes in NR3C1 and IGF2/H19 methylation patterns have been associated with behavioural and psychiatric outcomes. Maternal mental state has been associated with offspring NR3C1 promotor and IGF2/H19 imprinting control region (ICR) methylation patterns. However, there is a lack of prospective studies with long-term follow-up. METHODS: 52 mother-offspring pairs were studied from 12 to 22 weeks of pregnancy and offspring was followed-up until 28-29 years-of-age. During pregnancy, mothers filled in a Life Event Scale and a Daily Hassles Scale measuring perceived stress; i.e., appraisal or subjectively experienced severity of impact of important life events and of daily hassles in several life domains during pregnancy, respectively. Green space was quantified around the residence, using high-resolution (1 m2) map data. Saliva and blood samples were obtained from the adult offspring. Absolute DNA methylation levels were determined in blood and saliva on four NR3C1 amplicons, and one IGF2/H19 ICR amplicon using a bisulfite PCR and sequencing method. Linear mixed effect models were used to test the associations between perceived stress and green spaces during pregnancy, and adult offspring methylation patterns. RESULTS: We found associations between maternal perceived stress during pregnancy and methylation patterns on two out of the four NR3C1 amplicons, measured in blood, from offspring in adulthood, but not with IGF2/H19 methylation. For an interquartile-range (IQR) increase in maternal perceived life event or daily hassles stress scores, absolute methylation levels on several NR3C1 CpG sites were significantly changed (-1.62 % to +5.89 %, p<0.05). Maternal perceived stress scores were not associated with IGF2/H19 methylation, neither in blood nor in saliva. Maternal exposure to green spaces surrounding the residence during the pregnancy was associated with IGF2/H19 ICR methylation (-0.80 % to -1.04 %, p<0.05) in saliva, but not with NR3C1 promotor methylation. CONCLUSION: We observed significant long-term effects of maternal perceived stress during pregnancy on the methylation patterns of the NR3C1 promotor in offspring well into adulthood. This may imply that maternal psychological distress during pregnancy may influence the regulation of the HPA-axis well into adulthood. Additionally, maternal proximity to green spaces was associated with IGF2/H19 ICR methylation patterns, which is a novel finding.


Subject(s)
DNA Methylation , Insulin-Like Growth Factor II , Prenatal Exposure Delayed Effects , RNA, Long Noncoding , Receptors, Glucocorticoid , Stress, Psychological , Humans , Female , Pregnancy , DNA Methylation/genetics , Insulin-Like Growth Factor II/genetics , Insulin-Like Growth Factor II/metabolism , Pilot Projects , Stress, Psychological/genetics , Stress, Psychological/metabolism , Adult , Receptors, Glucocorticoid/genetics , Receptors, Glucocorticoid/metabolism , Prenatal Exposure Delayed Effects/genetics , Prenatal Exposure Delayed Effects/metabolism , Male , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Adult Children/psychology , Mothers/psychology , Promoter Regions, Genetic/genetics , Genomic Imprinting/genetics , Prospective Studies
11.
Ger Med Sci ; 22: Doc04, 2024.
Article in English | MEDLINE | ID: mdl-38774559

ABSTRACT

The conduct of clinical trials in paediatrics is essential to improve drug therapy in children. In Europe, paediatric clinical trials have been supported by the European Paediatric Regulation since 2007, but there is still a great need for high-quality clinical trials. The personnel and time required to conduct clinical trials in accordance with EU Regulations 536/2014 and 745/2017 is considerably higher compared to other studies, such as observational studies. It is important that this additional workload for the trial centre is fully compensated, also taking into account EU state aid rules. In paediatric trials, it is necessary to take into account the special requirements of paediatric and adolescent medicine when calculating the additional costs. Within the framework of the pan-European paediatric study network c4c/GermanNetPaeT, a working group dealt with specific aspects of cost calculation in order to support paediatric study centres in internal cost calculation as well as in the subsequent preparation of financing requirements for industrial sponsors or public funders. In several workshops the working group developed a cost calculation template with the content derived from the "Joint recommendations for a total services account as a factor in simplifying contracts" of the Deutsche Hochschulmedizin (DHM, German University Medicine), the Netzwerk der Koordinierungszentren für Klinische Studien (KKS Network, Network of Coordinating Centres for Clinical Trials) and the Verband Forschender Arzneimittelhersteller (vfa, German Association of Research-Based Pharmaceutical Companies). By estimating the specific time required for measures and investigations as part of a sample study, the background to the increased time required was discussed and a list with aspects to be considered for cost calculation was compiled together with the study centres. The paediatrics-specific aspects mentioned in detail are intended to increase understanding of the particular problem of higher costs for clinical trials involving children and adolescents and the need for correspondingly appropriate remuneration. This transparent and comprehensible presentation of the higher financial requirements for both the study centres and the financial supporters is intended to promote the high-quality conduct of clinical trials in paediatric study centres in the long term.


Subject(s)
Clinical Trials as Topic , Pediatrics , Humans , Clinical Trials as Topic/economics , Costs and Cost Analysis , Germany , Pediatrics/economics , Pediatrics/standards
12.
CPT Pharmacometrics Syst Pharmacol ; 13(7): 1144-1159, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38693610

ABSTRACT

Dasatinib, a second-generation tyrosine kinase inhibitor, is approved for treating chronic myeloid and acute lymphoblastic leukemia. As a sensitive cytochrome P450 (CYP) 3A4 substrate and weak base with strong pH-sensitive solubility, dasatinib is susceptible to enzyme-mediated drug-drug interactions (DDIs) with CYP3A4 perpetrators and pH-dependent DDIs with acid-reducing agents. This work aimed to develop a whole-body physiologically-based pharmacokinetic (PBPK) model of dasatinib to describe and predict enzyme-mediated and pH-dependent DDIs, to evaluate the impact of strong and moderate CYP3A4 inhibitors and inducers on dasatinib exposure and to support optimized dasatinib dosing. Overall, 63 plasma profiles from perorally administered dasatinib in healthy volunteers and cancer patients were used for model development. The model accurately described and predicted plasma profiles with geometric mean fold errors (GMFEs) for area under the concentration-time curve from the first to the last timepoint of measurement (AUClast) and maximum plasma concentration (Cmax) of 1.27 and 1.29, respectively. Regarding the DDI studies used for model development, all (8/8) predicted AUClast and Cmax ratios were within twofold of observed ratios. Application of the PBPK model for dose adaptations within various DDIs revealed dasatinib dose reductions of 50%-80% for strong and 0%-70% for moderate CYP3A4 inhibitors and a 2.3-3.1-fold increase of the daily dasatinib dose for CYP3A4 inducers to match the exposure of dasatinib administered alone. The developed model can be further employed to personalize dasatinib therapy, thereby help coping with clinical challenges resulting from DDIs and patient-related factors, such as elevated gastric pH.


Subject(s)
Cytochrome P-450 CYP3A Inhibitors , Dasatinib , Drug Interactions , Models, Biological , Protein Kinase Inhibitors , Dasatinib/pharmacokinetics , Dasatinib/administration & dosage , Dasatinib/pharmacology , Humans , Cytochrome P-450 CYP3A Inhibitors/pharmacology , Cytochrome P-450 CYP3A Inhibitors/pharmacokinetics , Cytochrome P-450 CYP3A Inhibitors/administration & dosage , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/administration & dosage , Cytochrome P-450 CYP3A Inducers/pharmacology , Cytochrome P-450 CYP3A Inducers/administration & dosage , Cytochrome P-450 CYP3A/metabolism , Male , Adult , Area Under Curve , Female , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/administration & dosage , Middle Aged
13.
Biomed Pharmacother ; 175: 116721, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38749180

ABSTRACT

BACKGROUND: Despite remarkable advances in the therapy of multiple sclerosis (MS), patients with MS may still experience relapses. High-dose short-term methylprednisolone (MP) remains the standard treatment in the acute management of MS relapses due to its potent anti-inflammatory and immunosuppressive properties. However, there is a lack of studies on the cell type-specific transcriptome changes that are induced by this synthetic glucocorticoid (GC). Moreover, it is not well understood why some patients do not benefit adequately from MP therapy. METHODS: We collected peripheral blood from MS patients in relapse immediately before and after ∼3-5 days of therapy with MP at 4 study centers. CD19+ B cells and CD4+ T cells were then isolated for profiling the transcriptome with high-density arrays. The patients' improvement of neurological symptoms was evaluated after ∼2 weeks by the treating physicians. We finally analyzed the data to identify genes that were differentially expressed in response to the therapy and whose expression differed between clinical responders and non-responders. RESULTS: After MP treatment, a total of 33 genes in B cells and 55 genes in T helper cells were significantly up- or downregulated. The gene lists overlap in 10 genes and contain genes that have already been described as GC-responsive genes in the literature on other cell types and diseases. Their differential expression points to a rapid and coordinated modulation of multiple signaling pathways that influence transcription. Genes that were previously suggested as potential prognostic biomarkers of the clinical response to MP therapy could not be confirmed in our data. However, a greater increase in the expression of genes encoding proteins with antimicrobial activity was detected in CD4+ T cells from non-responders compared to responders. CONCLUSION: Our study delved into the cell type-specific effects of MP at the transcriptional level. The data suggest a therapy-induced ectopic expression of some genes (e.g., AZU1, ELANE and MPO), especially in non-responders. The biological consequences of this remain to be explored in greater depth. A better understanding of the molecular mechanisms underlying clinical recovery from relapses in patients with MS will help to optimize future treatment decisions.


Subject(s)
B-Lymphocytes , Glucocorticoids , Methylprednisolone , Recurrence , T-Lymphocytes, Helper-Inducer , Humans , Glucocorticoids/pharmacology , Glucocorticoids/therapeutic use , Glucocorticoids/administration & dosage , Male , Adult , Female , B-Lymphocytes/drug effects , B-Lymphocytes/metabolism , T-Lymphocytes, Helper-Inducer/drug effects , T-Lymphocytes, Helper-Inducer/metabolism , Methylprednisolone/pharmacology , Methylprednisolone/administration & dosage , Methylprednisolone/therapeutic use , Multiple Sclerosis, Relapsing-Remitting/drug therapy , Multiple Sclerosis, Relapsing-Remitting/genetics , Middle Aged , Multiple Sclerosis/drug therapy , Multiple Sclerosis/genetics , Gene Expression Regulation/drug effects , Gene Expression Profiling/methods , Transcriptome/drug effects
14.
Drugs R D ; 24(2): 187-199, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38809387

ABSTRACT

INTRODUCTION: Noscapine is a commonly used cough suppressant, with ongoing research on its anti-inflammatory and anti-tumor properties. The drug has a pronounced pharmacokinetic variability. OBJECTIVE: This evaluation aims to describe the pharmacokinetics of noscapine using a semi-mechanistic population pharmacokinetic model and to identify covariates that could explain inter-individual pharmacokinetic variability. METHODS: Forty-eight healthy volunteers (30 men and 18 women, mean age 33 years) were enrolled in a randomized, two-period, two-stage, crossover bioequivalence study of noscapine in two different liquid formulations. Noscapine plasma concentrations following oral administration of noscapine 50 mg were evaluated by a non-compartmental analysis and by a population pharmacokinetic model separately. RESULTS: Compared to the reference formulation, the test formulation exhibited ratios (with 94.12% confidence intervals) of 0.784 (0.662-0.929) and 0.827 (0.762-0.925) for peak plasma concentrations and area under the plasma concentration-time curve, respectively. Significant differences in p values (< 0.01) were both observed when comparing peak plasma concentrations and area under the plasma concentration-time curve between CYP2C9 genotype-predicted phenotypes. A three-compartmental model with zero-order absorption and first-order elimination process best described the plasma data. The introduction of a liver compartment was able to describe the profound first-pass effect of noscapine. Total body weight and the CYP2C9 genotype-predicted phenotype were both identified as significant covariates on apparent clearance, which was estimated as 958 ± 548 L/h for extensive metabolizers (CYP2C9*1/*1 and *1/*9), 531 ± 304 L/h for intermediate metabolizers with an activity score of 1.5 (CYP2C9*1/*2), and 343 ± 197 L/h for poor metabolizers and intermediate metabolizers with an activity score of 1.0 (CYP2C9*1/*3, *2/*3, and*3/*3). CONCLUSION: The current work is expected to facilitate the future pharmacokinetic/pharmacodynamic development of noscapine. This study was registered prior to starting at "Deutsches Register Klinischer Studien" under registration no. DRKS00017760.


Subject(s)
Cross-Over Studies , Cytochrome P-450 CYP2C9 , Genotype , Healthy Volunteers , Liver , Models, Biological , Noscapine , Humans , Noscapine/pharmacokinetics , Cytochrome P-450 CYP2C9/genetics , Male , Female , Adult , Liver/metabolism , Therapeutic Equivalency , Young Adult , Antitussive Agents/pharmacokinetics , Antitussive Agents/administration & dosage , Middle Aged , Administration, Oral
16.
Elife ; 122024 May 29.
Article in English | MEDLINE | ID: mdl-38808578

ABSTRACT

Alterations in the function of K+ channels such as the voltage- and Ca2+-activated K+ channel of large conductance (BKCa) reportedly promote breast cancer (BC) development and progression. Underlying molecular mechanisms remain, however, elusive. Here, we provide electrophysiological evidence for a BKCa splice variant localized to the inner mitochondrial membrane of murine and human BC cells (mitoBKCa). Through a combination of genetic knockdown and knockout along with a cell permeable BKCa channel blocker, we show that mitoBKCa modulates overall cellular and mitochondrial energy production, and mediates the metabolic rewiring referred to as the 'Warburg effect', thereby promoting BC cell proliferation in the presence and absence of oxygen. Additionally, we detect mitoBKCa and BKCa transcripts in low or high abundance, respectively, in clinical BC specimens. Together, our results emphasize, that targeting mitoBKCa could represent a treatment strategy for selected BC patients in future.


Subject(s)
Breast Neoplasms , Humans , Animals , Mice , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Cell Line, Tumor , Cell Proliferation , Mitochondria/metabolism , Mitochondria/genetics , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/metabolism , Large-Conductance Calcium-Activated Potassium Channel alpha Subunits/genetics , Mitochondrial Membranes/metabolism , Female , Energy Metabolism
17.
Clin Chim Acta ; 559: 119690, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38677452

ABSTRACT

BACKGROUND AND AIMS: Intensive care antibiotic treatment faces challenges due to substantial pharmacokinetic differences in critically ill patients. Individualized antibiotic dosing guided by therapeutic drug monitoring (TDM) is considered to minimize the risk of treatment failure and toxicity. This study aimed to develop a valid method for simultaneous LC-MS/MS quantification of 10 drugs frequently used in intensive care antibiotic therapy for which TDM-guided dosing is recommended: piperacillin, meropenem, flucloxacillin, cefuroxime, vancomycin, colistin A and B, linezolid, ciprofloxacin and tazobactam. METHODS AND RESULTS: Thorough optimization of sample preparation and chromatography resulted in a fast and simple method based on protein precipitation of 50 µL plasma or serum and gradient elution using an Acquity UPLC HSS-T3 column. Electrospray ionization-triple quadrupole mass spectrometry in dynamic multiple reaction monitoring was used for quantification, covering the therapeutic range of each drug compound. Validation following EMA and FDA recommendations, including inter-platform validation and inter-laboratory comparison, demonstrated high accuracy, precision and robustness of the new method. The assay was successfully used to monitor plasma antibiotic levels of critically ill patients (n = 35). CONCLUSION: The established multiplex method covers major drug classes with documented dosing challenges, provides a reliable basis for the implementation of high-throughput TDM, and its application confirmed the clinical impact of TDM in a real-world setting.


Subject(s)
Critical Illness , Drug Monitoring , Tandem Mass Spectrometry , Humans , Tandem Mass Spectrometry/methods , Drug Monitoring/methods , Chromatography, High Pressure Liquid , Anti-Bacterial Agents/blood , Male , Female , Middle Aged
18.
J Clin Med ; 13(8)2024 Apr 21.
Article in English | MEDLINE | ID: mdl-38673695

ABSTRACT

(1) Background: Laparoscopic staging is essential in gastric cancer (GC) to rule out peritoneal metastasis (PM). Hypericin, a plant-derived fluorescent compound, has been suggested to improve laparoscopic visualization of PM from GC. This prospective, single-arm, open-label clinical trial aimed to assess the feasibility and safety of oral hypericin administration as well as the suitability of fluorescence-guided laparoscopy (FGL) for improving the sensitivity and specificity of staging in GC patients (EudraCT-Number: 2015-005277-21; clinicaltrials.gov identifier: NCT-02840331). (2) Methods: GC patients received Laif® 900, an approved hypericin-containing phytopharmaceutical, once orally two to four hours before white light and ultraviolet light laparoscopy. The peritoneal cancer index was evaluated, biopsies taken and hypericin concentrations in serum and peritoneal tissue were determined by mass spectrometry. (3) Results: Between 2017 and 2021, out of 63 patients screened for eligibility, 50 patients were enrolled and treated per protocol. The study intervention was shown to be feasible and safe in all patients. Standard laparoscopy revealed suspicious lesions in 27 patients (54%), among whom 16 (59%) were diagnosed with PM. FGL identified suspicious areas in 25 patients (50%), among whom PM was confirmed in 13 cases (52%). Although hypericin concentrations in serum reached up to 5.64 ng/mL, no hypericin was detectable in peritoneal tissue biopsies. (4) Conclusions: FGL in patients with GC was shown to be feasible but futile in this study. Sufficient levels of hypericin should be ensured in target tissue prior to reassessing FGL with hypericin.

19.
Clin Res Cardiol ; 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38635033

ABSTRACT

BACKGROUND: Coronary artery spasm (CAS) is a frequent finding in patients presenting with angina pectoris. Although the pathogenesis of CAS is incompletely understood, previous studies suggested a genetic contribution. Our study aimed to elucidate genetic variants in a cohort of European patients with angina and unobstructed coronary arteries who underwent acetylcholine (ACh) provocation testing. METHODS: A candidate association analysis of 208 genes previously associated with cardiovascular conditions was performed using genotyped and imputed variants in patients grouped in epicardial (focal, diffuse) CAS (n = 119) and microvascular CAS (n = 87). Patients with a negative ACh test result (n = 45) served as controls. RESULTS: We found no association below the genome-wide significance threshold of p < 5 × 10-8, thus not confirming variants in ALDH2, NOS3, and ROCK2 previously reported in CAS patients of Asian ancestry. However, the analysis identified suggestive associations (p < 10-05) for the groups of focal epicardial CAS (CDH13) and diffuse epicardial CAS (HDAC9, EDN1). Downstream analysis of the potential EDN1 risk locus showed that CAS patients have significantly increased plasma endothelin-1 levels (ET-1) compared to controls. An EDN1 haplotype comprising rs9349379 and rs2070698 was significantly associated to ET-1 levels (p = 0.01). CONCLUSIONS: In summary, we suggest EDN1 as potential genetic risk loci for patients with diffuse epicardial CAS, and European ancestry. Plasma ET-1 levels may serve as a potential cardiac marker.

20.
Cell ; 187(7): 1666-1684.e26, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38490194

ABSTRACT

Diminished hepatocyte regeneration is a key feature of acute and chronic liver diseases and after extended liver resections, resulting in the inability to maintain or restore a sufficient functional liver mass. Therapies to restore hepatocyte regeneration are lacking, making liver transplantation the only curative option for end-stage liver disease. Here, we report on the structure-based development and characterization (nuclear magnetic resonance [NMR] spectroscopy) of first-in-class small molecule inhibitors of the dual-specificity kinase MKK4 (MKK4i). MKK4i increased liver regeneration upon hepatectomy in murine and porcine models, allowed for survival of pigs in a lethal 85% hepatectomy model, and showed antisteatotic and antifibrotic effects in liver disease mouse models. A first-in-human phase I trial (European Union Drug Regulating Authorities Clinical Trials [EudraCT] 2021-000193-28) with the clinical candidate HRX215 was conducted and revealed excellent safety and pharmacokinetics. Clinical trials to probe HRX215 for prevention/treatment of liver failure after extensive oncological liver resections or after transplantation of small grafts are warranted.


Subject(s)
Enzyme Inhibitors , Liver Failure , MAP Kinase Kinase 4 , Animals , Humans , Mice , Hepatectomy/methods , Hepatocytes , Liver , Liver Diseases/drug therapy , Liver Failure/drug therapy , Liver Failure/prevention & control , Liver Regeneration , Swine , MAP Kinase Kinase 4/antagonists & inhibitors , Enzyme Inhibitors/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL