Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters











Publication year range
1.
Science ; 385(6712): eadj8691, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39208110

ABSTRACT

Chromosome-containing micronuclei are a hallmark of aggressive cancers. Micronuclei frequently undergo irreversible collapse, exposing their enclosed chromatin to the cytosol. Micronuclear rupture catalyzes chromosomal rearrangements, epigenetic abnormalities, and inflammation, yet mechanisms safeguarding micronuclear integrity are poorly understood. In this study, we found that mitochondria-derived reactive oxygen species (ROS) disrupt micronuclei by promoting a noncanonical function of charged multivesicular body protein 7 (CHMP7), a scaffolding protein for the membrane repair complex known as endosomal sorting complex required for transport III (ESCRT-III). ROS retained CHMP7 in micronuclei while disrupting its interaction with other ESCRT-III components. ROS-induced cysteine oxidation stimulated CHMP7 oligomerization and binding to the nuclear membrane protein LEMD2, disrupting micronuclear envelopes. Furthermore, this ROS-CHMP7 pathological axis engendered chromosome shattering known to result from micronuclear rupture. It also mediated micronuclear disintegrity under hypoxic conditions, linking tumor hypoxia with downstream processes driving cancer progression.


Subject(s)
Endosomal Sorting Complexes Required for Transport , Membrane Proteins , Micronuclei, Chromosome-Defective , Neoplasms , Nuclear Proteins , Oxidative Stress , Humans , Cell Hypoxia , Chromatin/metabolism , Cysteine/metabolism , Endosomal Sorting Complexes Required for Transport/metabolism , Membrane Proteins/metabolism , Membrane Proteins/genetics , Mitochondria/metabolism , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Nuclear Envelope/metabolism , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Oxidation-Reduction , Reactive Oxygen Species/metabolism , HeLa Cells
2.
J Mater Chem B ; 12(34): 8335-8348, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39105364

ABSTRACT

Understanding protein-protein interactions (PPIs) through proximity labeling has revolutionized our comprehension of cellular mechanisms and pathology. Various proximity labeling techniques, such as HRP, APEX, BioID, TurboID, and µMap, have been widely used to biotinylate PPIs or organelles for proteomic profiling. However, the variability in labeling precision and efficiency of these techniques often results in limited reproducibility in proteomic detection. We address this persistent challenge by introducing proximity labeling expansion microscopy (PL-ExM), a super-resolution imaging technique that combines expansion microscopy with proximity labeling techniques. PL-ExM enabled up to 17 nm resolution with microscopes widely available, providing visual comparison of the labeling precision, efficiency, and false positives of different proximity labeling methods. Our mass spectrometry proteomic results confirmed that PL-ExM imaging is reliable in guiding the selection of proximity labeling techniques and interpreting the proteomic results with new spatial information.


Subject(s)
Proteomics , Humans , Proteomics/methods , Staining and Labeling , Protein Interaction Mapping/methods , Microscopy/methods , Proteins/metabolism , Proteins/analysis , Proteins/chemistry
3.
Mol Ther Oncol ; 32(3): 200836, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39050990

ABSTRACT

The successful trajectory of liposome-encapsulated doxorubicin (e.g., Doxil, which has been approved by the U.S. Food and Drug Administration) as an anticancer nanodrug in clinical applications is contradicted by in vitro cell viability data that highlight its reduced efficacy in promoting cell death compared with non-encapsulated doxorubicin. No reports to date have provided a mechanistic explanation for this apparently discordant evidence. Taking advantage of doxorubicin intrinsic fluorescence and time-resolved optical microscopy, we analyze the uptake and intracellular processing of liposome-encapsulated doxorubicin (L-DOX) in several in vitro cellular models. Cell entry of L-DOX was found to lead to a rapid (seconds to minutes), energy- and temperature-independent release of crystallized doxorubicin nanorods into the cell cytoplasm, which then disassemble into a pool of fibril-shaped derivatives capable of crossing the cellular membrane while simultaneously releasing active drug monomers. Thus, a steady state is rapidly established in which the continuous supply of crystal nanorods from incoming liposomes is counteracted by a concentration-guided efflux in the extracellular medium of fibril-shaped derivatives and active drug monomers. These results demonstrate that liposome-mediated delivery is constitutively less efficient than isolated drug in establishing favorable conditions for drug retention in the cell. In addition to explaining previous contradictory evidence, present results impose careful rethinking of the synthetic identity of encapsulated anticancer drugs.

4.
J Neurochem ; 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39018376

ABSTRACT

Microglia, the immune cells of the central nervous system, are dynamic and heterogenous cells. While single cell RNA sequencing has become the conventional methodology for evaluating microglial state, transcriptomics do not provide insight into functional changes, identifying a critical gap in the field. Here, we propose a novel organelle phenotyping approach in which we treat live human induced pluripotent stem cell-derived microglia (iMGL) with organelle dyes staining mitochondria, lipids, lysosomes and acquire data by live-cell spectral microscopy. Dimensionality reduction techniques and unbiased cluster identification allow for recognition of microglial subpopulations with single-cell resolution based on organelle function. We validated this methodology using lipopolysaccharide and IL-10 treatment to polarize iMGL to an "inflammatory" and "anti-inflammatory" state, respectively, and then applied it to identify a novel regulator of iMGL function, complement protein C1q. While C1q is traditionally known as the initiator of the complement cascade, here we use organelle phenotyping to identify a role for C1q in regulating iMGL polarization via fatty acid storage and mitochondria membrane potential. Follow up evaluation of microglia using traditional read outs of activation state confirm that C1q drives an increase in microglia pro-inflammatory gene production and migration, while suppressing microglial proliferation. These data together validate the use of a novel organelle phenotyping approach and enable better mechanistic investigation of molecular regulators of microglial state.

5.
bioRxiv ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38915530

ABSTRACT

We implemented a multimodal set of functional imaging techniques optimized for deep-tissue imaging to investigate how cancer cells invade surrounding tissues and how their physiological properties change in the process. As a model for cancer invasion of the extracellular matrix, we created 3D spheroids from triple-negative breast cancer cells (MDA-MB-231) and non-tumorigenic breast epithelial cells (MCF-10A). We analyzed multiple hallmarks of cancer within the same spheroid by combining a number of imaging techniques, such as metabolic imaging of NADH by Fluorescence Lifetime Imaging Microscopy (NADH-FLIM), hyperspectral imaging of a solvatochromic lipophilic dye (Nile Red) and extracellular matrix imaging by Second Harmonic Generation (SHG). We included phasor-based bioimage analysis of spheroids at three different time points, tracking both morphological and biological properties, including cellular metabolism, fatty acids storage, and collagen organization. Employing this multimodal deep-imaging framework, we observed and quantified cancer cell plasticity in response to changes in the environment composition.

6.
bioRxiv ; 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38915606

ABSTRACT

Macrophages exhibit a spectrum of behaviors upon activation and are generally classified as one of two types: inflammatory (M1) or anti-inflammatory (M2). Tracking these phenotypes in living cells can provide insight into immune function, but remains a challenging pursuit. Existing methods are mostly limited to static readouts or difficult to employ for multiplexed imaging in complex 3D environments while maintaining cellular resolution. We aimed to fill this void using bioluminescent technologies. Here we report genetically engineered luciferase reporters for long-term monitoring of macrophage polarization via spectral phasor analysis. M1- and M2- specific promoters were used to drive the expression of bioluminescent enzymes in macrophage cell lines. The readouts were multiplexed and discernable in both 2D and 3D formats with single cell resolution in living samples. Collectively, this work expands the toolbox of methods for monitoring macrophage polarization and provides a blueprint for monitoring other multifaceted networks in heterogeneous environments.

7.
bioRxiv ; 2023 Nov 13.
Article in English | MEDLINE | ID: mdl-38014020

ABSTRACT

Elucidating the spatial relationships within the protein interactome is pivotal to understanding the organization and regulation of protein-protein interactions. However, capturing the 3D architecture of the interactome presents a dual challenge: precise interactome labeling and super-resolution imaging. To bridge this gap, we present the Proximity Labeling Expansion Microscopy (PL-ExM). This innovation combines proximity labeling (PL) to spatially biotinylate interacting proteins with expansion microscopy (ExM) to increase imaging resolution by physically enlarging cells. PL-ExM unveils intricate details of the 3D interactome's spatial layout in cells using standard microscopes, including confocal and Airyscan. Multiplexing PL-ExM imaging was achieved by pairing the PL with immunofluorescence staining. These multicolor images directly visualize how interactome structures position specific proteins in the protein-protein interaction network. Furthermore, PL-ExM stands out as an assessment method to gauge the labeling radius and efficiency of different PL techniques. The accuracy of PL-ExM is validated by our proteomic results from PL mass spectrometry. Thus, PL-ExM is an accessible solution for 3D mapping of the interactome structure and an accurate tool to access PL quality.

8.
Nature ; 619(7968): 176-183, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37286593

ABSTRACT

Chromosomal instability (CIN) and epigenetic alterations are characteristics of advanced and metastatic cancers1-4, but whether they are mechanistically linked is unknown. Here we show that missegregation of mitotic chromosomes, their sequestration in micronuclei5,6 and subsequent rupture of the micronuclear envelope7 profoundly disrupt normal histone post-translational modifications (PTMs), a phenomenon conserved across humans and mice, as well as in cancer and non-transformed cells. Some of the changes in histone PTMs occur because of the rupture of the micronuclear envelope, whereas others are inherited from mitotic abnormalities before the micronucleus is formed. Using orthogonal approaches, we demonstrate that micronuclei exhibit extensive differences in chromatin accessibility, with a strong positional bias between promoters and distal or intergenic regions, in line with observed redistributions of histone PTMs. Inducing CIN causes widespread epigenetic dysregulation, and chromosomes that transit in micronuclei experience heritable abnormalities in their accessibility long after they have been reincorporated into the primary nucleus. Thus, as well as altering genomic copy number, CIN promotes epigenetic reprogramming and heterogeneity in cancer.


Subject(s)
Chromosomal Instability , Chromosome Segregation , Chromosomes , Epigenesis, Genetic , Micronuclei, Chromosome-Defective , Neoplasms , Animals , Humans , Mice , Chromatin/genetics , Chromosomal Instability/genetics , Chromosomes/genetics , Chromosomes/metabolism , Histones/chemistry , Histones/metabolism , Neoplasms/genetics , Neoplasms/pathology , Mitosis , DNA Copy Number Variations , Protein Processing, Post-Translational
9.
Biophys J ; 122(4): 672-683, 2023 02 21.
Article in English | MEDLINE | ID: mdl-36659850

ABSTRACT

Fluorescence lifetime imaging captures the spatial distribution of chemical species across cellular environments employing pulsed illumination confocal setups. However, quantitative interpretation of lifetime data continues to face critical challenges. For instance, fluorescent species with known in vitro excited-state lifetimes may split into multiple species with unique lifetimes when introduced into complex living environments. What is more, mixtures of species, which may be both endogenous and introduced into the sample, may exhibit 1) very similar lifetimes as well as 2) wide ranges of lifetimes including lifetimes shorter than the instrumental response function or whose duration may be long enough to be comparable to the interpulse window. By contrast, existing methods of analysis are optimized for well-separated and intermediate lifetimes. Here, we broaden the applicability of fluorescence lifetime analysis by simultaneously treating unknown mixtures of arbitrary lifetimes-outside the intermediate, Goldilocks, zone-for data drawn from a single confocal spot leveraging the tools of Bayesian nonparametrics (BNP). We benchmark our algorithm, termed BNP lifetime analysis, using a range of synthetic and experimental data. Moreover, we show that the BNP lifetime analysis method can distinguish and deduce lifetimes using photon counts as small as 500.


Subject(s)
Coloring Agents , Fluorescence , Bayes Theorem , Microscopy, Fluorescence/methods
10.
ACS Photonics ; 10(10): 3558-3569, 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-38406580

ABSTRACT

Fluorescence lifetime imaging microscopy (FLIM) has become a standard tool in the quantitative characterization of subcellular environments. However, quantitative FLIM analyses face several challenges. First, spatial correlations between pixels are often ignored as signal from individual pixels is analyzed independently thereby limiting spatial resolution. Second, existing methods deduce photon ratios instead of absolute lifetime maps. Next, the number of fluorophore species contributing to the signal is unknown, while excited state lifetimes with <1 ns difference are difficult to discriminate. Finally, existing analyses require high photon budgets and often cannot rigorously propagate experimental uncertainty into values over lifetime maps and number of species involved. To overcome all of these challenges simultaneously and self-consistently at once, we propose the first doubly nonparametric framework. That is, we learn the number of species (using Beta-Bernoulli process priors) and absolute maps of these fluorophore species (using Gaussian process priors) by leveraging information from pulses not leading to observed photon. We benchmark our framework using a broad range of synthetic and experimental data and demonstrate its robustness across a number of scenarios including cases where we recover lifetime differences between species as small as 0.3 ns with merely 1000 photons.

11.
Nat Cancer ; 3(11): 1386-1403, 2022 11.
Article in English | MEDLINE | ID: mdl-36411320

ABSTRACT

The pancreatic tumor microenvironment drives deregulated nutrient availability. Accordingly, pancreatic cancer cells require metabolic adaptations to survive and proliferate. Pancreatic cancer subtypes have been characterized by transcriptional and functional differences, with subtypes reported to exist within the same tumor. However, it remains unclear if this diversity extends to metabolic programming. Here, using metabolomic profiling and functional interrogation of metabolic dependencies, we identify two distinct metabolic subclasses among neoplastic populations within individual human and mouse tumors. Furthermore, these populations are poised for metabolic cross-talk, and in examining this, we find an unexpected role for asparagine supporting proliferation during limited respiration. Constitutive GCN2 activation permits ATF4 signaling in one subtype, driving excess asparagine production. Asparagine release provides resistance during impaired respiration, enabling symbiosis. Functionally, availability of exogenous asparagine during limited respiration indirectly supports maintenance of aspartate pools, a rate-limiting biosynthetic precursor. Conversely, depletion of extracellular asparagine with PEG-asparaginase sensitizes tumors to mitochondrial targeting with phenformin.


Subject(s)
Adenocarcinoma , Pancreatic Neoplasms , Animals , Mice , Humans , Pancreatic Neoplasms/drug therapy , Asparagine/metabolism , Adenocarcinoma/drug therapy , Symbiosis , Tumor Microenvironment , Pancreatic Neoplasms
12.
ACS Photonics ; 9(3): 1015-1025, 2022 Mar 16.
Article in English | MEDLINE | ID: mdl-35847830

ABSTRACT

Fluorescence lifetime imaging microscopy (FLIM) may reveal subcellular spatial lifetime maps of key molecular species. Yet, such a quantitative picture of life necessarily demands high photon budgets at every pixel under the current analysis paradigm, thereby increasing acquisition time and photodamage to the sample. Motivated by recent developments in computational statistics, we provide a direct means to update our knowledge of the lifetime maps of species of different lifetimes from direct photon arrivals, while accounting for experimental features such as arbitrary forms of the instrument response function (IRF) and exploiting information from empty laser pulses not resulting in photon detection. Our ability to construct lifetime maps holds for arbitrary lifetimes, from short lifetimes (comparable to the IRF) to lifetimes exceeding interpulse times. As our method is highly data efficient, for the same amount of data normally used to determine lifetimes and photon ratios, working within the Bayesian paradigm, we report direct blind unmixing of lifetimes with subnanosecond resolution and subpixel spatial resolution using standard raster scan FLIM images. We demonstrate our method using a wide range of simulated and experimental data.

13.
Nat Methods ; 19(7): 893-898, 2022 07.
Article in English | MEDLINE | ID: mdl-35739310

ABSTRACT

Bioluminescence imaging with luciferase-luciferin pairs is a well-established technique for visualizing biological processes across tissues and whole organisms. Applications at the microscale, by contrast, have been hindered by a lack of detection platforms and easily resolved probes. We addressed this limitation by combining bioluminescence with phasor analysis, a method commonly used to distinguish spectrally similar fluorophores. We built a camera-based microscope equipped with special optical filters to directly assign phasor locations to unique luciferase-luciferin pairs. Six bioluminescent reporters were easily resolved in live cells, and the readouts were quantitative and instantaneous. Multiplexed imaging was also performed over extended time periods. Bioluminescent phasor further provided direct measures of resonance energy transfer in single cells, setting the stage for dynamic measures of cellular and molecular features. The merger of bioluminescence with phasor analysis fills a long-standing void in imaging capabilities, and will bolster future efforts to visualize biological events in real time and over multiple length scales.


Subject(s)
Luminescent Measurements , Microscopy , Luciferases , Luminescent Measurements/methods
14.
Biophys J ; 121(11): 2152-2167, 2022 06 07.
Article in English | MEDLINE | ID: mdl-35490296

ABSTRACT

Nuclear proteins can modulate their DNA binding activity and the exploration volume available during DNA target search by self-associating into higher-order oligomers. Directly tracking this process in the nucleoplasm of a living cell is, however, a complex task. Thus, here we present a microscopy method based on radial pair correlation of molecular brightness fluctuations (radial pCOMB) that can extract the mobility of a fluorescently tagged nuclear protein as a function of its oligomeric state and spatiotemporally map the anisotropy of this parameter with respect to nuclear architecture. By simply performing a rapid frame scan acquisition, radial pCOMB has the capacity to detect, within each pixel, protein oligomer formation and the size-dependent obstruction nuclear architecture imparts on this complex's transport across sub-micrometer distances. From application of radial pCOMB to an oligomeric transcription factor and DNA repair protein, we demonstrate that homo-oligomer formation differentially regulates chromatin accessibility and interaction with the DNA template.


Subject(s)
Cell Nucleus , Nuclear Proteins , Cell Nucleus/metabolism , Chromatin/metabolism , DNA/metabolism , Diffusion , Nuclear Proteins/metabolism
15.
Sci Rep ; 11(1): 10719, 2021 05 21.
Article in English | MEDLINE | ID: mdl-34021177

ABSTRACT

Voltage-gated potassium (Kv) channels are a family of membrane proteins that facilitate K+ ion diffusion across the plasma membrane, regulating both resting and action potentials. Kv channels comprise four pore-forming α subunits, each with a voltage sensing domain, and they are regulated by interaction with ß subunits such as those belonging to the KCNE family. Here we conducted a comprehensive biophysical characterization of stoichiometry and protein diffusion across the plasma membrane of the epithelial KCNQ1-KCNE2 complex, combining total internal reflection fluorescence (TIRF) microscopy and a series of complementary Fluorescence Fluctuation Spectroscopy (FFS) techniques. Using this approach, we found that KCNQ1-KCNE2 has a predominant 4:4 stoichiometry, while non-bound KCNE2 subunits are mostly present as dimers in the plasma membrane. At the same time, we identified unique spatio-temporal diffusion modalities and nano-environment organization for each channel subunit. These findings improve our understanding of KCNQ1-KCNE2 channel function and suggest strategies for elucidating the subunit stoichiometry and forces directing localization and diffusion of ion channel complexes in general.


Subject(s)
Potassium Channels/chemistry , Protein Interaction Domains and Motifs , Spectrum Analysis , Action Potentials , Animals , CHO Cells , Cricetulus , Humans , Ion Channel Gating , Models, Molecular , Molecular Conformation , Patch-Clamp Techniques , Potassium Channels/metabolism , Protein Binding , Spectrum Analysis/methods , Structure-Activity Relationship
16.
Nat Methods ; 18(5): 542-550, 2021 05.
Article in English | MEDLINE | ID: mdl-33859440

ABSTRACT

Fluorescence lifetime imaging microscopy (FLIM) and spectral imaging are two broadly applied methods for increasing dimensionality in microscopy. However, their combination is typically inefficient and slow in terms of acquisition and processing. By integrating technological and computational advances, we developed a robust and unbiased spectral FLIM (S-FLIM) system. Our method, Phasor S-FLIM, combines true parallel multichannel digital frequency domain electronics with a multidimensional phasor approach to extract detailed and precise information about the photophysics of fluorescent specimens at optical resolution. To show the flexibility of the Phasor S-FLIM technology and its applications to the biological and biomedical field, we address four common, yet challenging, problems: the blind unmixing of spectral and lifetime signatures from multiple unknown species, the unbiased bleedthrough- and background-free Förster resonance energy transfer analysis of biosensors, the photophysical characterization of environment-sensitive probes in living cells and parallel four-color FLIM imaging in tumor spheroids.


Subject(s)
Fluorescence Resonance Energy Transfer/methods , Fluorescent Dyes/chemistry , Image Processing, Computer-Assisted/methods , Optical Imaging/methods , Computer Simulation , Humans , Microscopy, Fluorescence/methods , Neoplasms , Spheroids, Cellular
17.
Data Brief ; 30: 105401, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32300614

ABSTRACT

The nanometer spacing between nucleosomes throughout global chromatin organisation modulates local DNA template access, and through continuous dynamic rearrangements, regulates genome function [1]. However, given that nucleosome packaging occurs on a spatial scale well below the diffraction limit, real time observation of chromatin structure in live cells by optical microscopy has proved technically difficult, despite recent advances in live cell super resolution imaging [2]. One alternative solution to quantify chromatin structure in a living cell at the level of nucleosome proximity is to measure and spatially map Förster resonance energy transfer (FRET) between fluorescently labelled histones - the core protein of a nucleosome [3]. In recent work we established that the phasor approach to fluorescence lifetime imaging microscopy (FLIM) is a robust method for the detection of histone FRET which can quantify nuclear wide chromatin compaction in the presence of cellular autofluorescence [4]. Here we share FLIM data recording histone FRET in live cells co-expressing H2B-eGFP and H2B-mCherry. The data was acquired in the frequency domain [5] and processed by the phasor approach to lifetime analysis [6]. The data can be valuable to researchers interested in using the histone FRET assay since it highlights the impact of cellular autofluorescence and acceptor-donor ratio on quantifying chromatin compaction. The data is related to the research article "Phasor histone FLIM-FRET microscopy quantifies spatiotemporal rearrangement of chromatin architecture during the DNA damage response" [4].

18.
Biophys J ; 117(11): 2054-2065, 2019 12 03.
Article in English | MEDLINE | ID: mdl-31732142

ABSTRACT

Deciphering the spatiotemporal coordination between nuclear functions is important to understand its role in the maintenance of human genome. In this context, super-resolution microscopy has gained considerable interest because it can be used to probe the spatial organization of functional sites in intact single-cell nuclei in the 20-250 nm range. Among the methods that quantify colocalization from multicolor images, image cross-correlation spectroscopy (ICCS) offers several advantages, namely it does not require a presegmentation of the image into objects and can be used to detect dynamic interactions. However, the combination of ICCS with super-resolution microscopy has not been explored yet. Here, we combine dual-color stimulated emission depletion (STED) nanoscopy with ICCS (STED-ICCS) to quantify the nanoscale distribution of functional nuclear sites. We show that super-resolved ICCS provides not only a value of the colocalized fraction but also the characteristic distances associated to correlated nuclear sites. As a validation, we quantify the nanoscale spatial distribution of three different pairs of functional nuclear sites in MCF10A cells. As expected, transcription foci and a transcriptionally repressive histone marker (H3K9me3) are not correlated. Conversely, nascent DNA replication foci and the proliferating cell nuclear antigen(PCNA) protein have a high level of proximity and are correlated at a nanometer distance scale that is close to the limit of our experimental approach. Finally, transcription foci are found at a distance of 130 nm from replication foci, indicating a spatial segregation at the nanoscale. Overall, our data demonstrate that STED-ICCS can be a powerful tool for the analysis of the nanoscale distribution of functional sites in the nucleus.


Subject(s)
Cell Nucleus/metabolism , Microscopy/methods , Nanotechnology/methods , Spectrum Analysis , Color , Humans , MCF-7 Cells
19.
Proc Natl Acad Sci U S A ; 116(15): 7323-7332, 2019 04 09.
Article in English | MEDLINE | ID: mdl-30918123

ABSTRACT

To investigate how chromatin architecture is spatiotemporally organized at a double-strand break (DSB) repair locus, we established a biophysical method to quantify chromatin compaction at the nucleosome level during the DNA damage response (DDR). The method is based on phasor image-correlation spectroscopy of histone fluorescence lifetime imaging microscopy (FLIM)-Förster resonance energy transfer (FRET) microscopy data acquired in live cells coexpressing H2B-eGFP and H2B-mCherry. This multiplexed approach generates spatiotemporal maps of nuclear-wide chromatin compaction that, when coupled with laser microirradiation-induced DSBs, quantify the size, stability, and spacing between compact chromatin foci throughout the DDR. Using this technology, we identify that ataxia-telangiectasia mutated (ATM) and RNF8 regulate rapid chromatin decompaction at DSBs and formation of compact chromatin foci surrounding the repair locus. This chromatin architecture serves to demarcate the repair locus from the surrounding nuclear environment and modulate 53BP1 mobility.


Subject(s)
Chromatin Assembly and Disassembly , DNA Breaks, Double-Stranded , Histones/metabolism , Nucleosomes/metabolism , Ataxia Telangiectasia Mutated Proteins/metabolism , DNA-Binding Proteins/metabolism , Fluorescence Resonance Energy Transfer , HeLa Cells , Humans , Tumor Suppressor p53-Binding Protein 1/metabolism , Ubiquitin-Protein Ligases/metabolism
20.
Commun Biol ; 1: 10, 2018.
Article in English | MEDLINE | ID: mdl-30271897

ABSTRACT

Raster image correlation spectroscopy (RICS) is a powerful method for measuring molecular diffusion in live cells directly from images acquired on a laser scanning microscope. However, RICS only provides single average diffusion coefficients from regions with a lateral size on the order of few micrometers, which means that its spatial resolution is mainly limited to the cellular level. Here we introduce the local RICS (L-RICS), an easy-to-use tool that generates high resolution maps of diffusion coefficients from images acquired on a laser scanning microscope. As an application we show diffusion maps of a green fluorescent protein (GFP) within the nucleus and within the nucleolus of live cells at an effective spatial resolution of 500 nm. We find not only that diffusion in the nucleolus is slowed down compared to diffusion in the nucleoplasm, but also that diffusion in the nucleolus is highly heterogeneous.

SELECTION OF CITATIONS
SEARCH DETAIL