Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters











Publication year range
1.
Article in English | MEDLINE | ID: mdl-39192887

ABSTRACT

Background: The understanding of molecular characteristics of HER2-low breast cancer is evolving since the establishment of trastuzumab deruxtecan. Here, we explore the differences in expression patterns of immune-related genes in the tumor immune microenvironment (TME) and survival between HER2-low and HER2-zero breast cancers. Methods: Comprehensive genomic and immune profiling, including RNA-seq gene expression assessment of 395 immune genes, was performed on FFPE samples from 129 patients with advanced HER2-negative (immunohistochemistry (IHC) 0, 1+ or 2+ with negative ERBB2 amplification by in-situ hybridization) breast cancer. Both estrogen receptor (ER) and HER2 statuses were obtained from available pathology reports. mRNA expressions of immune biomarkers, except for PD-L1 IHC and TMB, were derived from RNA-seq. Statistical comparisons were performed using the Kruskal-Wallis or Wilcoxon Rank-Sum test or the two-sample test for equality of proportions with continuity correction (p≤0.05 for significance). Survival differences were calculated using Kaplan-Meier analysis (p≤0.05 for significance). Results: There were no significant differences in mRNA expressions of immune-related genes between HER2-low and HER2-zero breast cancers. However, HER2-low breast cancers were associated with a higher proportion of ER-positivity. When ER was analyzed along with HER2, we observed a significantly higher tumor immunogenic signature (TIGS) expression in HER2-zero/ER-negative tumors than in HER2-low/ER-positive tumors (p=0.0088). Similarly, lower expression of PD-L1 and T cell immunoglobulin and ITIM domain (TIGIT) mRNA was observed in HER2-low/ER-positive tumors when compared to HER2-zero/ER-negative tumors (p=0.014 and 0.012, respectively). Patients with HER2-low tumors had a longer median OS than those with HER2-zero tumors (94 months vs 42 months, p=0.0044). Conclusion: Patients with HER2-low breast cancer have longer survivals yet display no differences in immune-related gene expression when compared to those with HER2-zero cancers. The differences in survival can be attributed to the higher rate of ER-positivity seen in HER2-low breast cancers, compared to HER2-zero tumors.

2.
Med Oncol ; 41(9): 227, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39143271

ABSTRACT

Gastroesophageal adenocarcinoma (GEAC) poses a significant challenge due to its poor prognosis and limited treatment options. Recently, Cancer/testis antigens (CTAs) have emerged as potential therapy targets due to their high expression in tumor cells and their immunogenic nature. We aimed to explore the expression and co-expression of CTAs in GEAC. We analyzed 63 GEAC patients initially and validated our findings in 329 patients from The Cancer Genome Atlas (TCGA) database. CTA expression was measured after RNA sequencing, while clinical information, including survival outcomes and treatment details, was collected from an institutional database. Co-expression patterns among CTAs were determined using Spearman correlation analysis. The majority of the study cohort were male (87%), Caucasian (94%), and had stage IV disease (64%). CTAs were highly prevalent, ranging from 58 to 19%. The MAGE gene family showed the highest expression, consistent across both cohorts. The correlation matrix revealed a distinct cluster of significantly co-expressed genes, including MAGEA3, NY-ESO-1, and others (0.27 ≤ r ≤ 0.73). Survival analysis revealed that individual CTAs were associated with poorer survival outcomes in patients not receiving immunotherapy while showing potential for improved survival in those undergoing immunotherapy, although these findings lacked robust reliability. Our study provides a comprehensive characterization of CTA expression and co-expression in GEAC. The strong correlation among CTAs like MAGE, NY-ESO-1, and GAGE suggests a potential for therapies targeting multiple CTAs simultaneously. Further research, including prospective trials, is warranted to assess the prognostic value of CTAs and their suitability as therapeutic targets.


Subject(s)
Adenocarcinoma , Antigens, Neoplasm , Esophageal Neoplasms , Stomach Neoplasms , Humans , Male , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Adenocarcinoma/metabolism , Adenocarcinoma/mortality , Antigens, Neoplasm/genetics , Antigens, Neoplasm/metabolism , Esophageal Neoplasms/pathology , Esophageal Neoplasms/genetics , Esophageal Neoplasms/metabolism , Esophageal Neoplasms/mortality , Stomach Neoplasms/pathology , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism , Stomach Neoplasms/mortality , Female , Middle Aged , Aged , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Prognosis , Gene Expression Regulation, Neoplastic , Neoplasm Proteins/genetics , Neoplasm Proteins/biosynthesis , Adult
3.
Res Sq ; 2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38947068

ABSTRACT

Gastroesophageal adenocarcinoma (GEAC) poses a significant challenge due to its poor prognosis and limited treatment options. Recently, Cancer/testis antigens (CTAs) have emerged as potential therapy targets due to their high expression in tumor cells and their immunogenic nature. We aimed to explore the expression and co-expression of CTAs in GEAC. We analyzed 63 GEAC patients initially and validated our findings in 329 patients from The Cancer Genome Atlas (TCGA) database. CTA expression was measured after RNA sequencing, while clinical information, including survival outcomes and treatment details, was collected from an institutional database. Co-expression patterns among CTAs were determined using Pearson correlation analysis. The majority of the study cohort were male (87%), Caucasian (94%), and had stage IV disease (64%). CTAs were highly prevalent, ranging from 58-19%. The MAGE gene family showed the highest expression, consistent across both cohorts. The correlation matrix revealed a distinct cluster of significantly co-expressed genes, including MAGEA3, NY-ESO-1, and others (0.27 ≤ r ≤ 0.73). Survival analysis revealed that individual CTAs were associated with poorer survival outcomes in patients not receiving immunotherapy while showing potential for improved survival in those undergoing immunotherapy, although these findings lacked robust reliability. Our study provides a comprehensive characterization of CTA expression and co-expression in GEAC. The strong correlation among CTAs like MAGE, NY-ESO-1, and GAGE suggests a potential for therapies targeting multiple CTAs simultaneously. Further research, including prospective trials, is warranted to assess the prognostic value of CTAs and their suitability as therapeutic targets.

4.
J Transl Med ; 22(1): 141, 2024 02 07.
Article in English | MEDLINE | ID: mdl-38326843

ABSTRACT

BACKGROUND: Cancer-testis antigens (CTAs) are tumor antigens that are normally expressed in the testes but are aberrantly expressed in several cancers. CTA overexpression drives the metastasis and progression of lung cancer, and is associated with poor prognosis. To improve lung cancer diagnosis, prognostic prediction, and drug discovery, robust CTA identification and quantitation is needed. In this study, we examined and quantified the co-expression of CTAs in lung cancer to derive cancer testis antigen burden (CTAB), a novel biomarker of immunotherapy response. METHODS: Formalin fixed paraffin embedded (FFPE) tumor samples in discovery cohort (n = 5250) and immunotherapy and combination therapy treated non-small cell lung cancer (NSCLC) retrospective (n = 250) cohorts were tested by comprehensive genomic and immune profiling (CGIP), including tumor mutational burden (TMB) and the mRNA expression of 17 CTAs. PD-L1 expression was evaluated by IHC. CTA expression was summed to derive the CTAB score. The median CTAB score for the discovery cohort of 170 was applied to the retrospective cohort as cutoff for CTAB "high" and "low". Biomarker and gene expression correlation was measured by Spearman correlation. Kaplan-Meier survival analyses were used to detect overall survival (OS) differences, and objective response rate (ORR) based on RECIST criteria was compared using Fisher's exact test. RESULTS: The CTAs were highly co-expressed (p < 0.05) in the discovery cohort. There was no correlation between CTAB and PD-L1 expression (R = 0.011, p = 0.45) but some correlation with TMB (R = 0.11, p = 9.2 × 10-14). Kaplan-Meier survival analysis of the immunotherapy-treated NSCLC cohort revealed better OS for the pembrolizumab monotherapy treated patients with high CTAB (p = 0.027). The combination group demonstrated improved OS compared to pembrolizumab monotherapy group (p = 0.04). The pembrolizumab monotherapy patients with high CTAB had a greater ORR than the combination therapy group (p = 0.02). CONCLUSIONS: CTA co-expression can be reliably measured using CGIP in solid tumors. As a biomarker, CTAB appears to be independent from PD-L1 expression, suggesting that CTAB represents aspects of tumor immunogenicity not measured by current standard of care testing. Improved OS and ORR for high CTAB NSCLC patients treated with pembrolizumab monotherapy suggests a unique underlying aspect of immune response to these tumor antigens that needs further investigation.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Male , Lung Neoplasms/drug therapy , Carcinoma, Non-Small-Cell Lung/pathology , B7-H1 Antigen/metabolism , Cetrimonium/therapeutic use , Retrospective Studies , Testis/chemistry , Testis/metabolism , Testis/pathology , Antigens, Neoplasm , Biomarkers, Tumor/genetics
5.
PLoS One ; 16(12): e0260089, 2021.
Article in English | MEDLINE | ID: mdl-34855780

ABSTRACT

Timely and accurate identification of molecular alterations in solid tumors is essential for proper management of patients with advanced cancers. This has created a need for rapid, scalable comprehensive genomic profiling (CGP) systems that detect an increasing number of therapeutically-relevant variant types and molecular signatures. In this study, we assessed the analytical performance of the TruSight Oncology 500 High-Throughput assay for detection of somatic alterations from formalin-fixed paraffin-embedded tissue specimens. In parallel, we developed supporting software and automated sample preparation systems designed to process up to 70 clinical samples in a single NovaSeq 6000TM sequencing run with a turnaround time of <7 days from specimen receipt to report. The results demonstrate that the scalable assay accurately and reproducibly detects small variants, copy number alterations, microsatellite instability (MSI) and tumor mutational burden (TMB) from 40ng DNA, and multiple gene fusions, including known and unknown partners and splice variants from 20ng RNA. 717 tumor samples and reference materials with previously known alterations in 96 cancer-related genes were sequenced to evaluate assay performance. All variant classes were reliably detected at consistent and reportable variant allele percentages with >99% overall accuracy and precision. Our results demonstrate that the high-throughput CGP assay is a reliable method for accurate detection of molecular alterations in support of precision therapeutics in oncology. The supporting systems and scalable workflow allow for efficient interpretation and prompt reporting of hundreds of patient cancer genomes per week with excellent analytical performance.


Subject(s)
Genetic Variation , High-Throughput Nucleotide Sequencing/methods , Microsatellite Instability , Neoplasms/genetics , Biomarkers, Tumor/genetics , DNA Copy Number Variations , High-Throughput Nucleotide Sequencing/instrumentation , Humans , Mutation , Neoplasms/pathology , Reproducibility of Results , Sensitivity and Specificity , Sequence Analysis, RNA , Workflow
6.
J Pers Med ; 11(12)2021 Dec 07.
Article in English | MEDLINE | ID: mdl-34945796

ABSTRACT

Recent epidemiological studies have shown that obesity, typically measured by increased body mass index (BMI), is associated with an increased risk of gastroesophageal adenocarcinoma (GEAC), but the contributing molecular and immune mechanisms remain unknown. Since obesity is known to promote chronic inflammation, we hypothesized that obesity leads to inflammation-related immune dysfunction, which can be reversed by immune-modulating therapy. To test our hypothesis, we examined the clinical and molecular data from advanced GEAC patients. To this end, 46 GEAC tumors were evaluated for biomarkers representing tumor inflammation, cell proliferation, and PD-L1 expression. A CoxPH regression model with potential co-variates, followed by pairwise post hoc analysis, revealed that inflammation in the GEAC tumor microenvironment is associated with improved overall survival, regardless of BMI. We also observed a significant association between cell proliferation and progression-free survival in overweight individuals who received immune-modulating therapy. In conclusion, our data confirm the role of the immune system in the natural course of GEAC and its responses to immunotherapies, but do not support the role of BMI as an independent clinically relevant biomarker in this group of patients.

7.
Biomark Res ; 9(1): 56, 2021 Jul 07.
Article in English | MEDLINE | ID: mdl-34233760

ABSTRACT

BACKGROUND: Contemporary to the rapidly evolving landscape of cancer immunotherapy is the equally changing understanding of immune tumor microenvironments (TMEs) which is crucial to the success of these therapies. Their reliance on a robust host immune response necessitates clinical grade measurements of immune TMEs at diagnosis. In this study, we describe a stable tumor immunogenic profile describing immune TMEs in multiple tumor types with ability to predict clinical benefit from immune checkpoint inhibitors (ICIs). METHODS: A tumor immunogenic signature (TIGS) was derived from targeted RNA-sequencing (RNA-seq) and gene expression analysis of 1323 clinical solid tumor cases spanning 35 histologies using unsupervised analysis. TIGS correlation with ICI response and survival was assessed in a retrospective cohort of NSCLC, melanoma and RCC tumor blocks, alone and combined with TMB, PD-L1 IHC and cell proliferation biomarkers. RESULTS: Unsupervised clustering of RNA-seq profiles uncovered a 161 gene signature where T cell and B cell activation, IFNg, chemokine, cytokine and interleukin pathways are over-represented. Mean expression of these genes produced three distinct TIGS score categories: strong (n = 384/1323; 29.02%), moderate (n = 354/1323; 26.76%), and weak (n = 585/1323; 44.22%). Strong TIGS tumors presented an improved ICI response rate of 37% (30/81); with highest response rate advantage occurring in NSCLC (ORR = 36.6%; 16/44; p = 0.051). Similarly, overall survival for strong TIGS tumors trended upward (median = 25 months; p = 0.19). Integrating the TIGS score categories with neoplastic influence quantified via cell proliferation showed highly proliferative and strong TIGS tumors correlate with significantly higher ICI ORR than poorly proliferative and weak TIGS tumors [14.28%; p = 0.0006]. Importantly, we noted that strong TIGS and highly [median = not achieved; p = 0.025] or moderately [median = 16.2 months; p = 0.025] proliferative tumors had significantly better survival compared to weak TIGS, highly proliferative tumors [median = 7.03 months]. Importantly, TIGS discriminates subpopulations of potential ICI responders that were considered negative for response by TMB and PD-L1. CONCLUSIONS: TIGS is a comprehensive and informative measurement of immune TME that effectively characterizes host immune response to ICIs in multiple tumors. The results indicate that when combined with PD-L1, TMB and cell proliferation, TIGS provides greater context of both immune and neoplastic influences on the TME for implementation into clinical practice.

8.
Integr Biol (Camb) ; 12(4): 90-108, 2020 04 20.
Article in English | MEDLINE | ID: mdl-32248236

ABSTRACT

Macrophages are abundant in the tumor microenvironment (TME), serving as accomplices to cancer cells for their invasion. Studies have explored the biochemical mechanisms that drive pro-tumor macrophage functions; however the role of TME interstitial flow (IF) is often disregarded. Therefore, we developed a three-dimensional microfluidic-based model with tumor cells and macrophages to study how IF affects macrophage migration and its potential contribution to cancer invasion. The presence of either tumor cells or IF individually increased macrophage migration directedness and speed. Interestingly, there was no additive effect on macrophage migration directedness and speed under the simultaneous presence of tumor cells and IF. Further, we present an in silico model that couples chemokine-mediated signaling with mechanosensing networks to explain our in vitro observations. In our model design, we propose IL-8, CCL2, and ß-integrin as key pathways that commonly regulate various Rho GTPases. In agreement, in vitro macrophage migration remained elevated when exposed to a saturating concentration of recombinant IL-8 or CCL2 or to the co-addition of a sub-saturating concentration of both cytokines. Moreover, antibody blockade against IL-8 and/or CCL2 inhibited migration that could be restored by IF, indicating cytokine-independent mechanisms of migration induction. Importantly, we demonstrate the utility of an integrated in silico and 3D in vitro approach to aid the design of tumor-associated macrophage-based immunotherapeutic strategies.


Subject(s)
Cell Movement , Chemokines/metabolism , Immunotherapy/methods , Macrophages/cytology , Macrophages/metabolism , Tumor Microenvironment , Cell Differentiation , Cell Line, Tumor , Cell Separation , Coculture Techniques , Culture Media, Conditioned , Cytokines/metabolism , Humans , Lab-On-A-Chip Devices , Models, Theoretical , Signal Transduction
9.
Sci Rep ; 8(1): 7711, 2018 05 16.
Article in English | MEDLINE | ID: mdl-29769553

ABSTRACT

The processes of dissolution and fragmentation have high relevance in pharmaceutical research, medicine, digestive physiology, and engineering design. Experimentally, dissolution and fragmentation are observed to occur simultaneously, yet little is known about the relative importance of each of these processes and their impact on the dissolution process as a whole. Thus, in order to better explain these phenomena and the manner in which they interact, we have developed a novel mathematical model of dissolution, based on partial differential equations, taking into consideration the two constituent processes of surface area-dependent diffusive mass removal and physical fragmentation of the solid particles, and the basic physical laws governing these processes. With this model, we have been able to quantify the effects of the interplay between these two processes and determine the optimal conditions for rapid solid dissolution in liquid solvents. We were able to reproduce experimentally observed phenomena and simulate dissolution under a wide range of experimentally occurring conditions to give new perspectives into the kinetics of this common, yet complex process. Finally, we demonstrated the utility of this model to aid in experiment and device design as an optimisation tool.

10.
Article in English | MEDLINE | ID: mdl-30079253

ABSTRACT

In the tumour microenvironment, cancer cells directly interact with both the immune system and the stroma. It is firmly established that the immune system, historically believed to be a major part of the body's defence against tumour progression, can be reprogrammed by tumour cells to be ineffective, inactivated, or even acquire tumour promoting phenotypes. Likewise, stromal cells and extracellular matrix can also have pro-and anti-tumour properties. However, there is strong evidence that the stroma and immune system also directly interact, therefore creating a tripartite interaction that exists between cancer cells, immune cells and tumour stroma. This interaction contributes to the maintenance of a chronically inflamed tumour microenvironment with pro-tumorigenic immune phenotypes and facilitated metastatic dissemination. A comprehensive understanding of cancer in the context of dynamical interactions of the immune system and the tumour stroma is therefore required to truly understand the progression toward and past malignancy.

SELECTION OF CITATIONS
SEARCH DETAIL