Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
PNAS Nexus ; 3(9): pgae363, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39267815

ABSTRACT

The ground state of a one-dimensional spin- 1 2 uniform antiferromagnetic Heisenberg chain (AfHc) is a Tomonaga-Luttinger liquid which is quantum-critical with respect to applied magnetic fields up to a saturation field µ 0 H s beyond which it transforms to a fully polarized state. Wilson ratio has been predicted to be a good indicator for demarcating these phases [Phys. Rev. B 96, 220401 (2017)]. From detailed temperature and magnetic field-dependent magnetization, magnetic susceptibility and specific heat measurements in a metalorganic complex and comparisons with field theory and quantum transfer matrix method calculations, the complex was found to be a very good realization of a spin- 1 2 AfHc. Wilson ratio obtained from experimentally obtained magnetic susceptibility and magnetic contribution of specific heat values was used to map the magnetic phase diagram of the uniform spin- 1 2 AfHc over large regions of phase space demarcating Tomonaga-Luttinger liquid, saturation field quantum critical, and fully polarized states. Luttinger parameter and spinon velocity were found to match very well with the values predicted from conformal field theory.

2.
Angew Chem Int Ed Engl ; : e202410806, 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39072955

ABSTRACT

Pd-catalysis has stood as a pivotal force in synthetic transformations for decades, maintaining its status as a paramount tool in the realm of C-H bond activation. While functionalization at proximal positions has become commonplace, achieving selective and sustainable access to distal positions continues to captivate scientific endeavors. Recently, a noteworthy trend has emerged, focusing on the utilization of non-covalent interactions to address the challenges associated with remote functionalization. The integration of these non-covalent interactions into palladium catalysis stands as a justified response to the demands of achieving selective transformations at distal positions. This review delves into the latest advancements and trends surrounding the incorporation of non-covalent interactions within the field of palladium catalysis. Furthermore, it is noteworthy to emphasize that multifunctional templates, particularly those harnessing hydrogen bonding, present an elegant and sophisticated approach to activate C-H bonds in a highly directed fashion. These templates showcase versatility and demonstrate potential applications across diverse contexts within the area of remote functionalization.

3.
Phys Chem Chem Phys ; 26(11): 8651-8657, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38436422

ABSTRACT

The detection and quantification of hydroxyl radicals (HO˙) generated by low-temperature plasmas (LTPs) are crucial for understanding their role in diverse applications of plasma radiation. In this study, the formation of HO˙ in the irradiated aqueous phase is investigated at various plasma parameters, by probing them indirectly using the coumarin molecule. We propose a quantification methodology for these radicals, combining spectrophotometry to study the coumarin reaction with hydroxyl radicals and fluorimetry to evaluate the formation yield of the hydroxylated product, 7-hydroxycoumarin. Additionally, we thoroughly examine and discuss the impact of pH on this quantification process. This approach enhances our comprehension of HO˙ formation during LTP irradiation, adding valuable insights to plasma's biological applications.

4.
ACS Omega ; 8(1): 1663-1670, 2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36643434

ABSTRACT

An atmospheric pressure plasma jet (APPJ) is being advanced as an alternative radiation type that offers excellent efficacy in an array of medical applications against specific biological targets such as DNA. This work explores the possibility of implementing DNA and its damage as a probe for specific plasma diagnostics such as reactive plasma species formation and transient local heating. We analyzed both APPJ characteristics based on the detection of plasma-induced strand breaks and DNA denaturation. Further, we implemented a machine learning model based on artificial neural networks to predict the type and extent of DNA damage for a given combination of APPJ parameter values. This methodology is an important step toward deciphering and explaining the potential adverse effects of APPJ on biological samples of any prospective interest in medicine.

5.
Sci Rep ; 12(1): 18353, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36319720

ABSTRACT

Low-temperature plasmas have quickly emerged as alternative and unconventional types of radiation that offer great promise for various clinical modalities. As with other types of radiation, the therapeutic efficacy and safety of low-temperature plasmas are ubiquitous concerns, and assessing their dose rates is crucial in clinical settings. Unfortunately, assessing the dose rates by standard dosimetric techniques has been challenging. To overcome this difficulty, we proposed a dose-rate assessment framework that combined the predictive modeling of plasma-induced damage in DNA by machine learning with existing radiation dose-DNA damage correlations. Our results indicated that low-temperature plasmas have a remarkably high dose rate that can be tuned by various process parameters. This attribute is beneficial for inducing radiobiological effects in a more controllable manner.


Subject(s)
Machine Learning , Radiobiology , Temperature , DNA Damage , Cold Temperature
6.
Materials (Basel) ; 13(13)2020 Jun 30.
Article in English | MEDLINE | ID: mdl-32629902

ABSTRACT

Atmospheric pressure plasma (APP) deposition techniques are useful today because of their simplicity and their time and cost savings, particularly for growth of oxide films. Among the oxide materials, titanium dioxide (TiO2) has a wide range of applications in electronics, solar cells, and photocatalysis, which has made it an extremely popular research topic for decades. Here, we provide an overview of non-thermal APP deposition techniques for TiO2 thin film, some historical background, and some very recent findings and developments. First, we define non-thermal plasma, and then we describe the advantages of APP deposition. In addition, we explain the importance of TiO2 and then describe briefly the three deposition techniques used to date. We also compare the structural, electronic, and optical properties of TiO2 films deposited by different APP methods. Lastly, we examine the status of current research related to the effects of such deposition parameters as plasma power, feed gas, bias voltage, gas flow rate, and substrate temperature on the deposition rate, crystal phase, and other film properties. The examples given cover the most common APP deposition techniques for TiO2 growth to understand their advantages for specific applications. In addition, we discuss the important challenges that APP deposition is facing in this rapidly growing field.

SELECTION OF CITATIONS
SEARCH DETAIL