Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Diagn Microbiol Infect Dis ; 110(3): 116397, 2024 Nov.
Article in English | MEDLINE | ID: mdl-39126826

ABSTRACT

Here, we characterize the complete genome sequence of Escherichia coli isolated from a newborn affected by bacterial meningitis in Italy. Genome of E. coli strain 1455 harbored a circular chromosome and two plasmids of 167.740-bp and 4.073-bp in length, respectively. E. coli 1455 belonged to the ST3, serotype O17:H18 and carried different determinants including resistance to B-lactams, tetracyclines, and quinolones. In addition, genome of E. coli strain 1455 harbored 5 integrated pro-phage regions mainly located in the chromosome, while most of the virulence factors associated to the invasiveness and clinical severity and different antimicrobial resistance determinants (blaTEM-1, tet(A) and qnrS1) were located in the 167-Kb plasmid. Taken together, our findings suggest a possible widespread of a virulence factors-carrying plasmid worldwide and highlight the importance of genomic characterization in the diffusion of public health threats.


Subject(s)
Escherichia coli , Genome, Bacterial , Meningitis, Escherichia coli , Plasmids , Virulence Factors , Infant, Newborn , Italy , Humans , Escherichia coli/genetics , Escherichia coli/isolation & purification , Escherichia coli/pathogenicity , Escherichia coli/classification , Genome, Bacterial/genetics , Virulence Factors/genetics , Plasmids/genetics , Meningitis, Escherichia coli/microbiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Whole Genome Sequencing , Meningitis, Bacterial/microbiology , Serogroup , Microbial Sensitivity Tests , Genomics
2.
Cells ; 13(16)2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39195205

ABSTRACT

We investigated the activity of cefiderocol/ß-lactamase inhibitor combinations against clinical strains with different susceptibility profiles to cefiderocol to explore the potentiality of antibiotic combinations as a strategy to contain the major public health problem of multidrug-resistant (MDR) pathogens. Specifically, we evaluated the synergistic activity of cefiderocol with avibactam, sulbactam, or tazobactam on three of the most "Critical Priority" group of MDR bacteria (carbapenem-resistant Enterobacterales, Pseudomonas aeruginosa, and Acinetobacter baumannii). Clinical isolates were genomically characterized by Illumina iSeq 100. The synergy test was conducted with time-kill curve assays. Specifically, cefiderocol/avibactam, /sulbactam, or /tazobactam combinations were analyzed. Synergism was assigned if bacterial grow reduction reached 2 log10 CFU/mL. We reported the high antimicrobial activity of the cefiderocol/sulbactam combination against carbapenem-resistant Enterobacterales, P. aeruginosa, and A. baumannii; of the cefiderocol/avibactam combination against carbapenem-resistant Enterobacterales; and of the cefiderocol/tazobactam combination against carbapenem-resistant Enterobacterales and P. aeruginosa. Our results demonstrate that all ß-lactamase inhibitors (BLIs) tested are able to enhance cefiderocol antimicrobial activity, also against cefiderocol-resistant isolates. The cefiderocol/sulbactam combination emerges as the most promising combination, proving to highly enhance cefiderocol activity in all the analyzed carbapenem-resistant Gram-negative isolates, whereas the Cefiderocol/tazobactam combination resulted in being active only against carbapenem-resistant Enterobacterales and P. aeruginosa, and cefiderocol/avibactam was only active against carbapenem-resistant Enterobacterales.


Subject(s)
Anti-Bacterial Agents , Azabicyclo Compounds , Cefiderocol , Cephalosporins , Drug Synergism , Gram-Negative Bacteria , Microbial Sensitivity Tests , Sulbactam , Tazobactam , Azabicyclo Compounds/pharmacology , Tazobactam/pharmacology , Sulbactam/pharmacology , Cephalosporins/pharmacology , Anti-Bacterial Agents/pharmacology , Gram-Negative Bacteria/drug effects , Carbapenems/pharmacology , Humans , Acinetobacter baumannii/drug effects , Pseudomonas aeruginosa/drug effects , beta-Lactamase Inhibitors/pharmacology , Drug Resistance, Multiple, Bacterial/drug effects , Drug Combinations
3.
Eur J Clin Microbiol Infect Dis ; 43(9): 1861-1864, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39017998

ABSTRACT

We evaluated the activity of piperacillin in relation to INCREASING TAZOBACTAM CONCENTRATION against ESBL-producing Enterobacterales collected from patients with bacteraemia. Increasing tazobactam concentration (4, 12 or 24 mg/L) exerted a reduction of piperacillin MICs under the clinical breakpoint in a concentration-dependent manner (0%, 60% and 90% of clinical isolates). Also, activity of piperacillin/tazobactam based at higher achievable serum concentrations (123/14 mg/L) is needed to reduce the bacterial growth in 92% of ESBL-producers. CHANGES IN THE PIPERACILLIN MIC IN RELATION TO INCREASING TAZOBACTAM SUGGEST THAT REALTIME TDM COULD BE USED FOR DRIVEN ANTIMICROBIAL THERAPY WITH PIPERACILLIN/TAZOBACTAM IN BSI DUE TO ESBL STRAINS.


Subject(s)
Anti-Bacterial Agents , Bacteremia , Enterobacteriaceae Infections , Enterobacteriaceae , Microbial Sensitivity Tests , Piperacillin , Tazobactam , beta-Lactamases , Humans , Anti-Bacterial Agents/pharmacology , Bacteremia/microbiology , beta-Lactamases/metabolism , Enterobacteriaceae/drug effects , Enterobacteriaceae/isolation & purification , Enterobacteriaceae Infections/microbiology , Enterobacteriaceae Infections/drug therapy , Piperacillin/pharmacology , Piperacillin, Tazobactam Drug Combination/pharmacology , Tazobactam/pharmacology
4.
Pathogens ; 13(6)2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38921804

ABSTRACT

BACKGROUND: Klebsiella pneumoniae is a concerning pathogen, responsible for hospital-associated outbreaks. Multi drug resistant (MDR) strains are especially hard to treat. We conducted whole-genome sequencing on a MDR K. pneumoniae strain in order to identify genomic features potentially linked to its phenotype. METHODS: DNA sequencing was performed on the Illumina iSeq 100 platform. Genome assembly was carried out with SPAdes. The genome was annotated with RASTtk. Typing was performed with MLST and Kaptive. Antibiotic resistance genes were detected with AMRFinderPlus and Abricate, and further verified with BLAST. RESULTS: The strain exhibited resistance to ceftazidime/avibactam and cefiderocol, but remained susceptible to carbapenems. The strain belonged to sequence type ST101, serotype O1:K17. The analysis of antibiotic resistance genes indicated that the strain carried a novel KPC variant, designated as KPC-203, featuring a EL deletion at amino acid position 166-167, within the Ω-loop, and a nine-amino-acid insertion (LAVYTRAPM) at position 259. Sequence alterations were found in porin genes ompK35 and ompK36. Unlike molecular testing, which was able to detect the KPC-203 variant, all phenotypic carbapenemase detection methods achieved negative results. CONCLUSIONS: KPC-203, a novel KPC variant, showed a sequence modification in a cephalosporin resistance-associated hotspot. Interestingly, such alterations typically correlate with the restoration of carbapenem susceptibility. We hypothesize that KPC-203 likely led to resistance to ceftazidime/avibactam and cefiderocol, while maintaining susceptibility to carbapenems.

5.
Antibiotics (Basel) ; 12(12)2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38136741

ABSTRACT

The novel ß-lactam/ß-lactamase inhibitor combinations (ßL-ßLICs) are one of the last-line resources available against multidrug-resistant (MDR) Gram-negative bacteria. Among ßL-ßLICs, ceftazidime/avibactam (CAZ-AVI) demonstrated strong activity against carbapenem-resistant Enterobacterales (CRE). Avibactam was proven to restore bactericidal activity of ceftazidime, inhibiting both KPC and OXA-48-like ß-lactamases. Despite this, emergence of CAZ-AVI-resistant strains in Enterobacterales has been reported. Herein, we evaluated the in vitro ceftazidime activity in the presence of increasing concentrations of avibactam by the broth microdilution method against CAZ-AVI-susceptible and resistant genome-characterized KPC-producing K. pneumoniae (KPC-Kp) clinical isolates. Strains expressing KPC and co-expressing KPC/OXA-181 carbapenemase were selected on the basis of the different phenotypic traits for novel ßL-ßLICs and cefiderocol. Notably, avibactam at 8 mg/L maintained the MIC of ceftazidime above the clinical breakpoint in 14 out of 15 (93%) KPC-Kp resistant to CAZ-AVI. A high concentration of avibactam (i.e., 64 mg/L) is required to observe a bactericidal activity of ceftazidime against 9 out of 15 (60%) CAZ-AVI-resistant isolates. In vitro evaluation showed that with the increase in the concentration of avibactam, ceftazidime showed high activity against CAZ-AVI-susceptible strains. High concentrations of avibactam in vivo are required for ceftazidime to be active against CAZ-AVI-resistant KPC-Kp.

SELECTION OF CITATIONS
SEARCH DETAIL