Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Foods ; 12(20)2023 Oct 19.
Article in English | MEDLINE | ID: mdl-37893723

ABSTRACT

The market has observed a rapid increase in the demand for plant-based foods as an alternative to animal meat products. Technologies such as high-moisture extrusion (HME) have the potential to develop anisotropic structures using alternative protein ingredients. This article discusses the different possible mechanisms responsible for structure formation and the effect of extrusion process parameters and outlines the recent advances in the long cooling dies (LCDs) used for meat alternative development. The role of different protein ingredients and the impact of combining them with other biopolymers were also evaluated. The underlying mechanism behind anisotropic structure formation during HME is a synergistic effect, with substantial dependence on the source of ingredients and their processing background. Formulation including proteins derived from plants, insects, animals, and microalgae with other biopolymers could pave the way to develop structured meat alternatives and fill nutritional interstices. Dynamic or rotating annular gap cooling dies operating at freely controllable shear and static annular gap dies are recent developments and assist to produce layered or fibrous structures. The complex chemical sites created during the HME of plant protein favour flavour and colour retention. This paper summarises the recent information published in the scientific literature and patents, which could further help researchers to fill the present knowledge gaps.

2.
J Food Sci Technol ; 59(11): 4152-4164, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36193474

ABSTRACT

Fruits and vegetable processing industries contribute to the largest portion of food waste. With changing diet habits, the demand for the production and processing of fruits and vegetables has increased greatly to fulfil the rising demand amongst the masses. Waste generation begins from the harvesting of raw material until it gets processed. Pineapple processing industries produce processing waste (peel, core, pomace, and crown) which are rich in various bioactive compounds. In most cases, the by-products contain larger amounts of valuable compounds which have higher nutritional and therapeutic importance than its final produce. Researchers have studied the potential of pineapple wastes primarily for the extraction of enzymes (bromelain, pectinase, xylanase and cellulase) and secondarily as a low-cost substrate to produce dietary fibre, organic acids, and phenolic antioxidants. This review describes the bioactive compounds in pineapple wastes, their extraction techniques, and their potential applications as a polymer material, bio-sorbents, bioethanol and vanillin production, etc. It focuses primarily on bioactive compounds that have functional and medicinal value and can be used independently or incorporated with other ingredients to form the valorised product.

3.
Ultrason Sonochem ; 61: 104812, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31704498

ABSTRACT

Concept of waste to wealth is a hot topic with research ongoing globally to reduce carbon footprint. In an effort to follow up this cause present study focused on tomato industry waste specifically the peel of tomatoes for extraction of pectin. Pectin extraction was performed using five different extraction techniques (Ultrasound assisted extraction (UAE); microwave assisted extraction (MAE); ohmic heating assisted extraction (OHAE); ultrasound assisted microwave extraction (UAME) and ultrasound assisted ohmic heating extraction (UAOHE) at different power levels to study its extraction and degradation kinetics and in turn to optimize the extraction process. The extracted pectin yield ranged from 9.30% for OHAE to 25.42% for MAE. Also, there was very less difference in the yield of MAE and UAME extracted pectin, but at the cost of major difference in degree of esterification 59.76 ±â€¯0.70 and 73.33 ±â€¯1.76%, respectively. In addition, all the pectin extracted under optimized conditions was having acceptable purity, [Galacturonic acid (GalA) content ranged from 675.8 ±â€¯11.31 to 913.3 ±â€¯20.50 g/kg of pectin]. FTIR analysis confirmed the presence of functional groups in the finger print region of identification for polysaccharide in all the extracted pectin. According to obtained results, UAME can be considered as better green extraction technology in terms of extraction yield as well as in quality of pectin compared to the other treatments used. Therefore, results suggest that UAME can be used as an efficient pectin extraction method from tomato processing waste.


Subject(s)
Food Industry , Industrial Waste , Pectins/isolation & purification , Solanum lycopersicum/chemistry , Ultrasonic Waves , Kinetics
SELECTION OF CITATIONS
SEARCH DETAIL