Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38260306

ABSTRACT

Apical-out organoids produced through eversion triggered by extra-organoid extracellular matrix (ECM) removal or degradation are generally small, structurally variable, and limited for viral infection and therapeutics testing. This work describes ECM-encapsulating, stably-inverted apical-out human upper airway organoids (AORBs) that are large (~500 µm diameter), consistently spherical, recapitulate in vivo-like cellular heterogeneity, and maintain their inverted morphology for over 60 days. Treatment of AORBs with IL-13 skews differentiation towards goblet cells and the apical-out geometry allows extra-organoid mucus collection. AORB maturation for 14 days induces strong co-expression of ACE2 and TMPRSS2 to allow high-yield infection with five SARS-CoV-2 variants. Dose-response analysis of three well-studied SARS-CoV-2 antiviral compounds [remdesivir, bemnifosbuvir (AT-511), and nirmatrelvir] shows AORB antiviral assays to be comparable to gold-standard air-liquid interface cultures, but with higher throughput (~10-fold) and fewer cells (~100-fold). While this work focuses on SARS-CoV-2 applications, the consistent AORB shape and size, and one-organoid-per-well modularity broadly impacts in vitro human cell model standardization efforts in line with economic imperatives and recently updated FDA regulation on therapeutic testing.

2.
PLoS One ; 18(7): e0283134, 2023.
Article in English | MEDLINE | ID: mdl-37467178

ABSTRACT

DNA origami purification is essential for many fields, including biophysics, molecular engineering, and therapeutics. The increasing interest in DNA origami has led to the development of rate-zonal centrifugation (RZC) as a scalable, high yield, and contamination-free method for purifying DNA origami nanostructures. RZC purification uses a linear density gradient of viscous media, such as glycerol or sucrose, to separate molecules according to their mass and shape. However, many methods for creating density gradients are time-consuming because they rely on slow passive diffusion. To expedite the preparation time, we used a LEGO gradient mixer to generate rotational motion and rapidly create a quasi-continuous density gradient with a minimal layering of the viscous media. Rotating two layers of differing concentrations at an angle decreases the time needed to form the density gradient from a few hours to minutes. In this study, the density gradients created by the LEGO gradient mixer were used to purify 3 DNA origami shapes that have different aspect ratios and numbers of components, with an aspect ratio ranging from 1:1 to 1:100 and the number of components up to 2. The gradient created by our LEGO gradient mixer is sufficient to purify folded DNA origami nanostructures from excess staple strands, regardless of their aspect ratios. Moreover, the gradient was able to separate DNA origami dimers from DNA origami monomers. In light of recent advances in large-scale DNA origami production, our method provides an alternative for purifying DNA origami nanostructures in large (gram) quantities in resource-limited settings.


Subject(s)
Nanostructures , Robotics , Centrifugation, Zonal , Nucleic Acid Conformation , Nanostructures/chemistry , DNA/chemistry , Nanotechnology/methods
3.
Proc Natl Acad Sci U S A ; 120(22): e2220033120, 2023 May 30.
Article in English | MEDLINE | ID: mdl-37235635

ABSTRACT

The complex motility of bacteria, ranging from single-swimmer behaviors such as chemotaxis to collective dynamics, including biofilm formation and active matter phenomena, is driven by their microscale propellers. Despite extensive study of swimming flagellated bacteria, the hydrodynamic properties of their helical-shaped propellers have never been directly measured. The primary challenges to directly studying microscale propellers are 1) their small size and fast, correlated motion, 2) the necessity of controlling fluid flow at the microscale, and 3) isolating the influence of a single propeller from a propeller bundle. To solve the outstanding problem of characterizing the hydrodynamic properties of these propellers, we adopt a dual statistical viewpoint that connects to the hydrodynamics through the fluctuation-dissipation theorem (FDT). We regard the propellers as colloidal particles and characterize their Brownian fluctuations, described by 21 diffusion coefficients for translation, rotation, and correlated translation-rotation in a static fluid. To perform this measurement, we applied recent advances in high-resolution oblique plane microscopy to generate high-speed volumetric movies of fluorophore-labeled, freely diffusing Escherichia coli flagella. Analyzing these movies with a bespoke helical single-particle tracking algorithm, we extracted trajectories, calculated the full set of diffusion coefficients, and inferred the average propulsion matrix using a generalized Einstein relation. Our results provide a direct measurement of a microhelix's propulsion matrix and validate proposals that the flagella are highly inefficient propellers, with a maximum propulsion efficiency of less than 3%. Our approach opens broad avenues for studying the motility of particles in complex environments where direct hydrodynamic approaches are not feasible.

4.
Integr Biol (Camb) ; 152023 04 11.
Article in English | MEDLINE | ID: mdl-37015816

ABSTRACT

This paper describes the manufacture of geometrically inverted mammary organoids encapsulating primary mammary preadipocytes and adipocytes. Material manipulation in an array of 192 hanging drops induces cells to self-assemble into inside-out organoids where an adipose tissue core is enveloped by a cell-produced basement membrane, indicated by laminin V staining and then a continuous layer of mammary epithelial cells. This inverted tissue structure enables investigation of multiple mammary cancer subtypes, with a significantly higher extent of invasion by triple-negative MDA-MB-231 breast cancer cells compared to MCF7 cells. By seeding cancer cells into co-culture around pre-formed organoids with encapsulated preadipocytes/adipocytes, invasion through the epithelium, then into the adipose core is observable through acquisition of confocal image stacks of whole mount specimens. Furthermore, in regions of the connective tissue core where invasion occurs, there is an accumulation of collagen in the microenvironment. Suggesting that this collagen may be conducive to increased invasiveness, the anti-fibrotic drug pirfenidone shows efficacy in this model by slowing invasion. Comparison of adipose tissue derived from three different donors shows method consistency as well as the potential to evaluate donor cell-based biological variability. Insight box Geometrically inverted mammary organoids encapsulating primary preadipocytes/adipocytes (P/As) are bioengineered using a minimal amount of Matrigel scaffolding. Use of this eversion-free method is key to production of adipose mammary organoids (AMOs) where not only the epithelial polarity but also the entire self-organizing arrangement, including adipose position, is inside-out. While an epithelial-only structure can analyze cancer cell invasion, P/As are required for invasion-associated collagen deposition and efficacy of pirfenidone to counteract collagen deposition and associated invasion. The methods described strike a balance between repeatability and preservation of biological variability: AMOs form consistently across multiple adipose cell donors while revealing cancer cell invasion differences.


Subject(s)
Triple Negative Breast Neoplasms , Humans , Adipocytes , Collagen , Organoids , Neoplasm Invasiveness , Tumor Microenvironment
5.
Adv Healthc Mater ; 10(4): e2000810, 2021 02.
Article in English | MEDLINE | ID: mdl-32583612

ABSTRACT

This paper describes mammary organoids with a basal-in phenotype where the basement membrane is located on the interior surface of the organoid. A key materials consideration to induce this basal-in phenotype is the use of a minimal gel scaffold that the epithelial cells self-assemble around and encapsulate. When MDA-MB-231 breast cancer cells are co-cultured with epithelial cells from day 0 under these conditions, cells self-organize into patterns with distinct cancer cell populations both inside and at the periphery of the epithelial organoid. In another type of experiment, the robust formation of the basement membrane on the epithelial organoid interior enables convenient studies of MDA-MB-231 invasion in a tumor progression-relevant direction relative to epithelial cell-basement membrane positioning. That is, the study of cancer invasion through the epithelium first, followed by the basement membrane to the basal side, is realized in an experimentally convenient manner where the cancer cells are simply seeded on the outside of preformed organoids, and their invasion into the organoid is monitored. Interestingly, invasion is more prominent when tumor cells are added to day 7 organoids with less developed basement membranes compared to day 16 organoids with more defined ones.


Subject(s)
Epithelial Cells , Organoids , Basement Membrane , Humans , Neoplasm Invasiveness , Phenotype
6.
Tissue Eng Regen Med ; 17(6): 773-785, 2020 12.
Article in English | MEDLINE | ID: mdl-32939672

ABSTRACT

BACKGROUND: The breast cancer microenvironment contains a variety of stromal cells that are widely implicated in worse patient outcomes. While many in vitro models of the breast tumor microenvironment have been published, only a small fraction of these feature adipocytes. Adipocytes are a cell type increasingly recognized to have complex functions in breast cancer. METHODS: In this review, we examine findings from recent examples of in vitro experiments modeling adipocytes within the local breast tumor microenvironment. RESULTS: Both two-dimensional and three-dimensional models of adipocytes in the breast tumor microenvironment are covered in this review and both have uncovered interesting phenomena related to breast tumor progression. CONCLUSION: Certain aspects of breast cancer and associated adipocyte biology: extracellular matrix effects, cell-cell contact, and physiological mass transport can only be examined with a three-dimensional culture platform. Opportunities remain for innovative improvements to be made to in vitro models that further increase what is known about adipocytes during breast cancer progression.


Subject(s)
Breast Neoplasms , Tumor Microenvironment , Adipocytes , Adipose Tissue , Breast , Female , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...