Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Lab Chip ; 24(10): 2774-2790, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38682609

ABSTRACT

The fabrication of microfluidic devices has progressed from cleanroom manufacturing to replica molding in polymers, and more recently to direct manufacturing by subtractive (e.g., laser machining) and additive (e.g., 3D printing) techniques, notably digital light processing (DLP) photopolymerization. However, many methods require technical expertise and DLP 3D printers remain expensive at a cost ∼15-30 K USD with ∼8 M pixels that are 25-40 µm in size. Here, we introduce (i) the use of low-cost (∼150-600 USD) liquid crystal display (LCD) photopolymerization 3D printing with ∼8-58 M pixels that are 18-35 µm in size for direct microfluidic device fabrication, and (ii) a poly(ethylene glycol) diacrylate-based ink developed for LCD 3D printing (PLInk). We optimized PLInk for high resolution, fast 3D printing and biocompatibility while considering the illumination inhomogeneity and low power density of LCD 3D printers. We made lateral features as small as 75 µm, 22 µm-thick embedded membranes, and circular channels with a 110 µm radius. We 3D printed microfluidic devices previously manufactured by other methods, including an embedded 3D micromixer, a membrane microvalve, and an autonomous capillaric circuit (CC) deployed for interferon-γ detection with excellent performance (limit of detection: 12 pg mL-1, CV: 6.8%). We made PLInk-based organ-on-a-chip devices in 384-well plate format and produced 3420 individual devices within an 8 h print run. We used the devices to co-culture two spheroids separated by a vascular barrier over 5 days and observed endothelial sprouting, cellular reorganization, and migration. LCD 3D printing together with tailored inks pave the way for democratizing access to high-resolution manufacturing of ready-to-use microfluidic and organ-on-a-chip devices by anyone, anywhere.


Subject(s)
Lab-On-A-Chip Devices , Liquid Crystals , Printing, Three-Dimensional , Liquid Crystals/chemistry , Humans , Polyethylene Glycols/chemistry , Equipment Design , Microfluidic Analytical Techniques/instrumentation , Microphysiological Systems
2.
Lab Chip ; 23(24): 5107-5119, 2023 12 05.
Article in English | MEDLINE | ID: mdl-37921001

ABSTRACT

Portable sample-to-answer devices with applications in point-of-care settings have emerged to obviate the necessity of centralized laboratories for biomarker analysis. In this work, a smartphone-operated and additively manufactured multiplexed electrochemical device (AMMED) is presented for the portable detection of biomarkers in blood and saliva. AMMED is comprised of a customized portable potentiostat with a multiplexing feature, a 3D-printed sample collection cartridge to handle three samples of saliva and blood at the same time, a smartphone application to remotely control the potentiostat, and a 3D-printed-based multiplexed microfluidic electrochemical biosensor (test chip). Here, by employing additive manufacturing techniques, a simple, cleanroom-free, and scalable approach was proposed for the fabrication of the test chip. Moreover, these techniques can bring about easy integration of AMMED components. Additionally, the test chip can be compatible with different affinity-based bioassays which can be implemented in a multiplexed manner for detection. The AMMED components were successfully characterized in terms of electrochemical and fluidic performance. Particularly, to demonstrate the biosensing capabilities of the device, the spike protein of the SARS-CoV-2 omicron variant and a well-established aptameric assay were selected as the representative biomarker and the bioassay, respectively. The proposed device accurately and selectively detected the target of interest in a rapid (5 min) and multiplex manner with a dynamic detection range of 1-10 000 pg ml-1 in different media, and the clinical feasibility was assessed by several saliva patient samples. AMMED offers a versatile sample-to-answer platform that can be used for the detection of various biomarkers present in biofluids.


Subject(s)
Biosensing Techniques , Mobile Applications , Humans , Point-of-Care Systems , Microfluidics , Smartphone , Biomarkers/analysis , Electrochemical Techniques
3.
Adv Healthc Mater ; 12(1): e2201501, 2023 01.
Article in English | MEDLINE | ID: mdl-36300601

ABSTRACT

Novel biomaterials for bio- and chemical sensing applications have gained considerable traction in the diagnostic community with rising trends of using biocompatible and lowly cytotoxic material. Hydrogel-based electrochemical sensors have become a promising candidate for their swellable, nano-/microporous, and aqueous 3D structures capable of immobilizing catalytic enzymes, electroactive species, whole cells, and complex tissue models, while maintaining tunable mechanical properties in wearable and implantable applications. With advances in highly controllable fabrication and processability of these novel biomaterials, the possibility of bio-nanocomposite hydrogel-based electrochemical sensing presents a paradigm shift in the development of biocompatible, "smart," and sensitive health monitoring point-of-care devices. Here, recent advances in electrochemical hydrogels for the detection of biomarkers in vitro, in situ, and in vivo are briefly reviewed to demonstrate their applicability in ideal conditions, in complex cellular environments, and in live animal models, respectively, to provide a comprehensive assessment of whether these biomaterials are ready for point-of-care translation and biointegration. Sensors based on conductive and nonconductive polymers are presented, with highlights of nano-/microstructured electrodes that provide enhanced sensitivity and selectivity in biocompatible matrices. An outlook on current challenges that shall be addressed for the realization of truly continuous real-time sensing platforms is also presented.


Subject(s)
Biosensing Techniques , Wearable Electronic Devices , Animals , Hydrogels/chemistry , Polymers , Biocompatible Materials/chemistry , Nanogels
4.
Adv Sci (Weinh) ; 9(33): e2204246, 2022 11.
Article in English | MEDLINE | ID: mdl-36253095

ABSTRACT

The last pandemic exposed critical gaps in monitoring and mitigating the spread of viral respiratory infections at the point-of-need. A cost-effective multiplexed fluidic device (NFluidEX), as a home-test kit analogous to a glucometer, that uses saliva and blood for parallel quantitative detection of viral infection and body's immune response in an automated manner within 11 min is proposed. The technology integrates a versatile biomimetic receptor based on molecularly imprinted polymers in a core-shell structure with nano gold electrodes, a multiplexed fluidic-impedimetric readout, built-in saliva collection/preparation, and smartphone-enabled data acquisition and interpretation. NFluidEX is validated with Influenza A H1N1 and SARS-CoV-2 (original strain and variants of concern), and achieves low detection limit in saliva and blood for the viral proteins and the anti-receptor binding domain (RBD) Immunoglobulin G (IgG) and Immunoglobulin M (IgM), respectively. It is demonstrated that nanoprotrusions of gold electrodes are essential for the fine templating of antibodies and spike proteins during molecular imprinting, and differentiation of IgG and IgM in whole blood. In the clinical setting, NFluidEX achieves 100% sensitivity and 100% specificity by testing 44 COVID-positive and 25 COVID-negative saliva and blood samples on par with the real-time quantitative polymerase chain reaction (p < 0.001, 95% confidence) and the enzyme-linked immunosorbent assay.


Subject(s)
COVID-19 , Influenza A Virus, H1N1 Subtype , Humans , SARS-CoV-2 , Saliva/chemistry , Antibodies, Viral , Immunoglobulin G , Immunoglobulin M , Immunity
SELECTION OF CITATIONS
SEARCH DETAIL
...