Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Langmuir ; 2024 Oct 09.
Article in English | MEDLINE | ID: mdl-39383311

ABSTRACT

An ingenious microstructure of electromagnetic microwave absorption materials is crucial to achieve strong absorption and a broad bandwidth. Herein, one-dimensional (1D) carbon fibers with implantation of zero-dimensional (0D) ZIF-8-derived carbon frameworks and construction of a three-dimensional (3D) microcosmic multichannel porous structure are fabricated by electro-blown spinning, solvent-thermal reaction, and high-temperature pyrolysis techniques. The 1D carbon fiber skeleton with a multichannel structure provides a direct axial conductive pathway for charge transport, which plays an important role in dielectric loss. The 0D surface carbon frameworks offer plenty of heterogeneous interfaces to trigger intensive interfacial polarization loss and act as dihedral angles for microwave scattering. The 3D microcosmic multichannel pores can not only generate multiple reflections as much as possible to dissipate electromagnetic microwave energy but also supply huge interior cavities to improve impedance matching. Thanks to the synergistic effect of a strong electrically conductive pathway for enhancing the conductive loss, a plenteous heterogeneous interface for triggering intensive interfacial polarization loss, microcosmic multichannel pores for generating multiple reflections and improving impedance matching, and N and O atom doping for inducing dipole polarization, the optimal sample with an ingenious microstructure delivers an excellent absorption performance of a minimum reflection loss of -35.5 dB at a thickness of 5.0 mm and an effective absorption bandwidth of 6.72 GHz (10.96-17.68 GHz) at a thickness of 2.0 mm. Such a well-designed multichannel porous carbon fiber may pave the way for the exploitation of high-performance microwave absorbing materials.

2.
Langmuir ; 40(29): 15220-15231, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-38975927

ABSTRACT

Lightweight and robust aerogels with multifunctionality are highly desirable to meet the technological demands of current society. Herein, we designed lightweight, elastic, and superhydrophobic multifunctional organic-inorganic fibrous hybrid aerogels which were assembled with organic aramid nanofibers and inorganic hierarchical porous carbon fibers. Thanks to the organic-inorganic fiber hybridization strategy, the optimal aerogels possessed remarkable compressibility and elasticity. Benefiting from the microscopic hierarchical porous structure of carbon fibers and the macroscopic macroporous lamellar structure of aerogels, the optimal aerogels exhibited superb lightweight property, conspicuous electromagnetic microwave absorption ability, and outstanding oily wastewater purification capacity. As for electromagnetic microwave absorption, it achieved a strong reflection loss of -41.8 dB, and the effective absorption bandwidth reached 6.86 GHz. Besides, the oil adsorption capacity for trichloromethane reached as high as 93.167 g g-1 with a capacity retention of 95.6% after 5 cycles. Meanwhile, it could act as a gravity-driven separation membrane to continuously separate trichloromethane from a trichloromethane-water mixture with a high flux of 7867.37 L·m-2·h-1, even for surfactant-stabilized water-in-n-heptane emulsions of 3794.94 L·m-2·h-1. Such a strategy might shed some light on the construction of multifunctional aerogels toward broader applications.

SELECTION OF CITATIONS
SEARCH DETAIL