Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 137
Filter
1.
BioData Min ; 17(1): 40, 2024 Oct 09.
Article in English | MEDLINE | ID: mdl-39385276

ABSTRACT

Alzheimer's disease (AD) has emerged as the most prevalent and complex neurodegenerative disorder among the elderly population. However, the genetic comorbidity etiology for AD remains poorly understood. In this study, we conducted pleiotropic analysis for 41 AD phenotypic comorbidities, identifying ten genetic comorbidities with 16 pleiotropy genes associated with AD. Through biological functional and network analysis, we elucidated the molecular and functional landscape of AD genetic comorbidities. Furthermore, leveraging the pleiotropic genes and reported biomarkers for AD genetic comorbidities, we identified 50 potential biomarkers for AD diagnosis. Our findings deepen the understanding of the occurrence of AD genetic comorbidities and provide new insights for the search for AD diagnostic markers.

3.
NPJ Aging ; 10(1): 36, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39103390

ABSTRACT

The comorbidity of Alzheimer's disease (AD) and age-related macular degeneration (AMD) has been established in clinical and genetic studies. There is growing interest in determining the shared environmental factors associated with both conditions. Recent advancements in record linkage techniques enable us to identify the contributing factors to AD and AMD from a wide range of variables. As such, we first constructed a knowledge graph based on the literature, which included all statistically significant risk factors for AD and AMD. An environment-wide association study (EWAS) was conducted to assess the contribution of various environmental factors to the comorbidity of AD and AMD based on the UK biobank. Based on the conditional Q-Q plots and Bayesian algorithm, several shared environmental factors were identified, which could be categorized into the domains of health condition, biological sample parameters, body index, and attendance availability. Finally, we generated a shared etiology landscape for AD and AMD by combining existing knowledge with our novel findings.

4.
Transl Vis Sci Technol ; 13(7): 3, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38953853

ABSTRACT

Purpose: To identify the accelerometer-measured daily behaviors that mediate the association of refractive status with depressive disorders and enhance the understanding of behavioral differences in depression. Methods: Participants with baseline mean spherical equivalent (MSE) and 7-day accelerometer measurements from the UK Biobank were included in this cohort study. Refractive status was categorized as hyperopia and non-hyperopia. Four daily behaviors, including moderate to vigorous intensity physical activity (MVPA), light physical activity (LPA), sedentary, and sleep were recorded between 2013 and 2015. We also assessed 24-hour behavior patterns. Depression cases were defined through both questionnaires and hospital records over 10 years of follow-up. Results: Among 20,607 individuals, every 0.5-diopter increase in MSE was associated with a 6% higher risk of depressive disorders, with hyperopia participants at a higher risk than non-hyperopia participants (odds ratio, 1.14; 95% confidence interval, 1.05-1.23; P = 0.001). MVPA and sleep time significantly correlated with depressive disorders, with odds ratios of 0.79 and 1.14 (P < 0.05). MSE showed significant correlations with all four behaviors. The effects of MVPA and sleep duration on MSE and depressive disorders varied throughout the day. Mediation analyses showed that MVPA and sleep partially mediated the relationship between MSE and depressive disorders, with 35.2% of the association between moderate to high hyperopia and depression mediated by MVPA. Conclusions: Physical activity and sleep significantly mediate the relationship between MSE and depressive disorders. Translational Relevance: The mediation effect of MVPA highlights its therapeutic potential in reducing the risk of depression among individuals with moderate to severe hyperopia. Interventions aimed at increasing daytime MVPA and decreasing daytime sleep could enhance mental health in this vulnerable group.


Subject(s)
Accelerometry , Depressive Disorder , Exercise , Sleep , Humans , Male , Female , Middle Aged , Depressive Disorder/epidemiology , Depressive Disorder/psychology , Adult , Sleep/physiology , Aged , Sedentary Behavior , Surveys and Questionnaires , Hyperopia/physiopathology , Hyperopia/epidemiology , Risk Factors
5.
NPJ Parkinsons Dis ; 10(1): 130, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982064

ABSTRACT

The metabolic profile predating the onset of Parkinson's disease (PD) remains unclear. We aim to investigate the metabolites associated with incident and prevalent PD and their predictive values in the UK Biobank participants with metabolomics and genetic data at the baseline. A panel of 249 metabolites was quantified using a nuclear magnetic resonance analytical platform. PD was ascertained by self-reported history, hospital admission records and death registers. Cox proportional hazard models and logistic regression models were used to investigate the associations between metabolites and incident and prevalent PD, respectively. Area under receiver operating characteristics curves (AUC) were used to estimate the predictive values of models for future PD. Among 109,790 participants without PD at the baseline, 639 (0.58%) individuals developed PD after one year from the baseline during a median follow-up period of 12.2 years. Sixty-eight metabolites were associated with incident PD at nominal significance (P < 0.05), spanning lipids, lipid constituent of lipoprotein subclasses and ratios of lipid constituents. After multiple testing corrections (P < 9 × 10-4), polyunsaturated fatty acids (PUFA) and omega-6 fatty acids remained significantly associated with incident PD, and PUFA was shared by incident and prevalent PD. Additionally, 14 metabolites were exclusively associated with prevalent PD, including amino acids, fatty acids, several lipoprotein subclasses and ratios of lipids. Adding these metabolites to the conventional risk factors yielded a comparable predictive performance to the risk-factor-based model (AUC = 0.766 vs AUC = 0.768, P = 0.145). Our findings suggested metabolic profiles provided additional knowledge to understand different pathways related to PD before and after its onset.

6.
Surv Ophthalmol ; 69(6): 945-956, 2024.
Article in English | MEDLINE | ID: mdl-39025239

ABSTRACT

Meibomian gland dysfunction (MGD) is increasingly recognized as a critical contributor to evaporative dry eye, significantly impacting visual quality. With a global prevalence estimated at 35.8 %, it presents substantial challenges for clinicians. Conventional manual evaluation techniques for MGD face limitations characterized by inefficiencies, high subjectivity, limited big data processing capabilities, and a dearth of quantitative analytical tools. With rapidly advancing artificial intelligence (AI) techniques revolutionizing ophthalmology, studies are now leveraging sophisticated AI methodologies--including computer vision, unsupervised learning, and supervised learning--to facilitate comprehensive analyses of meibomian gland (MG) evaluations. These evaluations employ various techniques, including slit lamp examination, infrared imaging, confocal microscopy, and optical coherence tomography. This paradigm shift promises enhanced accuracy and consistency in disease evaluation and severity classification. While AI has achieved preliminary strides in meibomian gland evaluation, ongoing advancements in system development and clinical validation are imperative. We review the evolution of MG evaluation, juxtapose AI-driven methods with traditional approaches, elucidate the specific roles of diverse AI technologies, and explore their practical applications using various evaluation techniques. Moreover, we delve into critical considerations for the clinical deployment of AI technologies and envisages future prospects, providing novel insights into MG evaluation and fostering technological and clinical progress in this arena.


Subject(s)
Artificial Intelligence , Meibomian Gland Dysfunction , Meibomian Glands , Humans , Meibomian Glands/diagnostic imaging , Meibomian Glands/pathology , Meibomian Gland Dysfunction/diagnosis , Tomography, Optical Coherence/methods , Diagnostic Techniques, Ophthalmological , Microscopy, Confocal/methods
7.
Clin Kidney J ; 17(7): sfae088, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38989278

ABSTRACT

Background: Chronic kidney disease (CKD) increases the risk of cardiovascular disease (CVD) and is more prevalent in older adults. Retinal age gap, a biomarker of aging based on fundus images, has been previously developed and validated. This study aimed to investigate the association of retinal age gap with CKD and subsequent CVD complications. Methods: A deep learning model was trained to predict the retinal age using 19 200 fundus images of 11 052 participants without any medical history at baseline. Retinal age gap, calculated as retinal age predicted minus chronological age, was calculated for the remaining 35 906 participants. Logistic regression models and Cox proportional hazards regression models were used for the association analysis. Results: A total of 35 906 participants (56.75 ± 8.04 years, 55.68% female) were included in this study. In the cross-sectional analysis, each 1-year increase in retinal age gap was associated with a 2% increase in the risk of CKD prevalence [odds ratio 1.02, 95% confidence interval (CI) 1.01-1.04, P = .012]. A longitudinal analysis of 35 039 participants demonstrated that 2.87% of them developed CKD in follow-up, and each 1-year increase in retinal age gap was associated with a 3% increase in the risk of CKD incidence (hazard ratio 1.03, 95% CI 1.01-1.05, P = .004). In addition, a total of 111 CKD patients (15.81%) developed CVD in follow-up, and each 1-year increase in retinal age gap was associated with a 10% increase in the risk of incident CVD (hazard ratio 1.10, 95% CI 1.03-1.17, P = .005). Conclusions: We found that retinal age gap was independently associated with the prevalence and incidence of CKD, and also associated with CVD complications in CKD patients. This supports the use of this novel biomarker in identifying individuals at high risk of CKD and CKD patients with increased risk of CVD.

8.
Ophthalmology ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38972358

ABSTRACT

PURPOSE: To identify longitudinal metabolomic fingerprints of diabetic retinopathy (DR) and to evaluate their usefulness in predicting DR development and progression. DESIGN: Multicenter, multiethnic cohort study. PARTICIPANTS: This study included 17 675 participants from the UK Biobank (UKB) who had baseline prediabetes or diabetes, identified in accordance with the 2021 American Diabetes Association guidelines, and were free of baseline DR and an additional 638 participants with type 2 diabetes mellitus from the Guangzhou Diabetic Eye Study (GDES) for external validation. Diabetic retinopathy was determined by ICD-10 codes in the UKB cohort and revised ETDRS grading criteria in the GDES cohort. METHODS: Longitudinal DR metabolomic fingerprints were identified through nuclear magnetic resonance (NMR) assay in UKB participants. The predictive value of these fingerprints for predicting DR development were assessed in a fully withheld test set. External validation and extrapolation analyses of DR progression and microvascular damage were conducted in the GDES cohort using NMR technology. Model assessments included the concordance (C) statistic, net classification improvement (NRI), integrated discrimination improvement (IDI), calibration, and clinical usefulness in both cohorts. MAIN OUTCOME MEASURES: DR development and progression and retinal microvascular damage. RESULTS: Of 168 metabolites, 118 were identified as candidate metabolomic fingerprints for future DR development. These fingerprints significantly improved the predictability for DR development beyond traditional indicators (C statistic, 0.802 [95% confidence interval (CI), 0.760-0.843] vs. 0.751 [95% CI, 0.706-0.796]; P = 5.56 × 10-4). Glucose, lactate, and citrate were among the fingerprints validated in the GDES cohort. Using these parsimonious and replicable fingerprints yielded similar improvements for predicting DR development (C statistic, 0.807 [95% CI, 0.711-0.903] vs. 0.617 [95% CI, 0.494-0.740]; P = 1.68 × 10-4) and progression (C statistic, 0.797 [95% CI, 0.712-0.882] vs. 0.665 [95% CI, 0.545-0.784]; P = 0.003) in the external GDES cohort. Improvements in NRIs, IDIs, and clinical usefulness also were evident in both cohorts (all P < 0.05). In addition, lactate and citrate were associated with microvascular damage across macular and optic nerve head regions among Chinese GDES (all P < 0.05). CONCLUSIONS: Metabolomic profiling may be effective in identifying robust fingerprints for predicting future DR development and progression, providing novel insights into the early and advanced stages of DR pathophysiology. FINANCIAL DISCLOSURE(S): The author(s) have no proprietary or commercial interest in any materials discussed in this article.

9.
Eye (Lond) ; 38(14): 2813-2821, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38871934

ABSTRACT

BACKGROUND: To apply machine learning (ML) algorithms to perform multiclass diabetic retinopathy (DR) classification using both clinical data and optical coherence tomography angiography (OCTA). METHODS: In this cross-sectional observational study, clinical data and OCTA parameters from 203 diabetic patients (203 eye) were used to establish the ML models, and those from 169 diabetic patients (169 eye) were used for independent external validation. The random forest, gradient boosting machine (GBM), deep learning and logistic regression algorithms were used to identify the presence of DR, referable DR (RDR) and vision-threatening DR (VTDR). Four different variable patterns based on clinical data and OCTA variables were examined. The algorithms' performance were evaluated using receiver operating characteristic curves and the area under the curve (AUC) was used to assess predictive accuracy. RESULTS: The random forest algorithm on OCTA+clinical data-based variables and OCTA+non-laboratory factor-based variables provided the higher AUC values for DR, RDR and VTDR. The GBM algorithm produced similar results, albeit with slightly lower AUC values. Leading predictors of DR status included vessel density, retinal thickness and GCC thickness, as well as the body mass index, waist-to-hip ratio and glucose-lowering treatment. CONCLUSIONS: ML-based multiclass DR classification using OCTA and clinical data can provide reliable assistance for screening, referral, and management DR populations.


Subject(s)
Algorithms , Diabetic Retinopathy , Fluorescein Angiography , Machine Learning , Tomography, Optical Coherence , Humans , Diabetic Retinopathy/classification , Diabetic Retinopathy/diagnosis , Diabetic Retinopathy/diagnostic imaging , Tomography, Optical Coherence/methods , Cross-Sectional Studies , Male , Female , Middle Aged , Fluorescein Angiography/methods , ROC Curve , Aged , Retinal Vessels/diagnostic imaging , Retinal Vessels/pathology , Adult
10.
Arch Gerontol Geriatr ; 126: 105546, 2024 11.
Article in English | MEDLINE | ID: mdl-38941948

ABSTRACT

OBJECTIVES: To examine the associaiton between environmental measures and brain volumes and its potential mediators. STUDY DESIGN: This was a prospective study. METHODS: Our analysis included 34,454 participants (53.4% females) aged 40-73 years at baseline (between 2006 and 2010) from the UK Biobank. Brain volumes were measured using magnetic resonance imaging between 2014 and 2019. RESULTS: Greater proximity to greenspace buffered at 1000 m at baseline was associated with larger volumes of total brain measured 8.8 years after baseline assessment (standardized ß (95% CI) for each 10% increment in coverage: 0.013(0.005,0.020)), grey matter (0.013(0.006,0.020)), and white matter (0.011(0.004,0.017)) after adjustment for covariates and air pollution. The corresponding numbers for natural environment buffered at 1000 m were 0.010 (0.004,0.017), 0.009 (0.004,0.015), and 0.010 (0.004,0.016), respectively. Similar results were observed for greenspace and natural environment buffered at 300 m. The strongest mediator for the association between greenspace buffered at 1000 m and total brain volume was smoking (percentage (95% CI) of total variance explained: 7.9% (5.5-11.4%)) followed by mean sphered cell volume (3.3% (1.8-5.8%)), vitamin D (2.9% (1.6-5.1%)), and creatinine in blood (2.7% (1.6-4.7%)). Significant mediators combined explained 18.5% (13.2-25.3%) of the association with total brain volume and 32.9% (95% CI: 22.3-45.7%) of the association with grey matter volume. The percentage (95% CI) of the association between natural environment and total brain volume explained by significant mediators combined was 20.6% (14.7-28.1%)). CONCLUSIONS: Higher coverage percentage of greenspace and environment may benefit brain health by promoting healthy lifestyle and improving biomarkers including vitamin D and red blood cell indices.


Subject(s)
Biomarkers , Brain , Life Style , Magnetic Resonance Imaging , Humans , Female , Male , Middle Aged , Brain/diagnostic imaging , Aged , Prospective Studies , Adult , Biomarkers/blood , Urban Population/statistics & numerical data , United Kingdom , Organ Size , Environment
11.
Hum Genomics ; 18(1): 39, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38632618

ABSTRACT

Age-related cataract and hearing difficulties are major sensory disorders that often co-exist in the global-wide elderly and have a tangible influence on the quality of life. However, the epidemiologic association between cataract and hearing difficulties remains unexplored, while little is known about whether the two share their genetic etiology. We first investigated the clinical association between cataract and hearing difficulties using the UK Biobank covering 502,543 individuals. Both unmatched analysis (adjusted for confounders) and a matched analysis (one control matched for each patient with cataract according to confounding factors) were undertaken and confirmed that cataract was associated with hearing difficulties (OR, 2.12; 95% CI, 1.98-2.27; OR, 2.03; 95% CI, 1.86-2.23, respectively). Furthermore, we explored and quantified the shared genetic architecture of these two complex sensory disorders at the common variant level using the bivariate causal mixture model (MiXeR) and conditional/conjunctional false discovery rate method based on the largest available genome-wide association studies of cataract (N = 585,243) and hearing difficulties (N = 323,978). Despite detecting only a negligible genetic correlation, we observe polygenic overlap between cataract and hearing difficulties and identify 6 shared loci with mixed directions of effects. Follow-up analysis of the shared loci implicates candidate genes QKI, STK17A, TYR, NSF, and TCF4 likely contribute to the pathophysiology of cataracts and hearing difficulties. In conclusion, this study demonstrates the presence of epidemiologic association between cataract and hearing difficulties and provides new insights into the shared genetic architecture of these two disorders at the common variant level.


Subject(s)
Cataract , Hearing Loss , Aged , Middle Aged , Humans , Genome-Wide Association Study/methods , Quality of Life , Hearing , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide , Genetic Loci , Protein Serine-Threonine Kinases , Apoptosis Regulatory Proteins
12.
World J Diabetes ; 15(4): 697-711, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38680694

ABSTRACT

BACKGROUND: The importance of age on the development of ocular conditions has been reported by numerous studies. Diabetes may have different associations with different stages of ocular conditions, and the duration of diabetes may affect the development of diabetic eye disease. While there is a dose-response relationship between the age at diagnosis of diabetes and the risk of cardiovascular disease and mortality, whether the age at diagnosis of diabetes is associated with incident ocular conditions remains to be explored. It is unclear which types of diabetes are more predictive of ocular conditions. AIM: To examine associations between the age of diabetes diagnosis and the incidence of cataract, glaucoma, age-related macular degeneration (AMD), and vision acuity. METHODS: Our analysis was using the UK Biobank. The cohort included 8709 diabetic participants and 17418 controls for ocular condition analysis, and 6689 diabetic participants and 13378 controls for vision analysis. Ocular diseases were identified using inpatient records until January 2021. Vision acuity was assessed using a chart. RESULTS: During a median follow-up of 11.0 years, 3874, 665, and 616 new cases of cataract, glaucoma, and AMD, respectively, were identified. A stronger association between diabetes and incident ocular conditions was observed where diabetes was diagnosed at a younger age. Individuals with type 2 diabetes (T2D) diagnosed at < 45 years [HR (95%CI): 2.71 (1.49-4.93)], 45-49 years [2.57 (1.17-5.65)], 50-54 years [1.85 (1.13-3.04)], or 50-59 years of age [1.53 (1.00-2.34)] had a higher risk of AMD independent of glycated haemoglobin. T2D diagnosed < 45 years [HR (95%CI): 2.18 (1.71-2.79)], 45-49 years [1.54 (1.19-2.01)], 50-54 years [1.60 (1.31-1.96)], or 55-59 years of age [1.21 (1.02-1.43)] was associated with an increased cataract risk. T2D diagnosed < 45 years of age only was associated with an increased risk of glaucoma [HR (95%CI): 1.76 (1.00-3.12)]. HRs (95%CIs) for AMD, cataract, and glaucoma associated with type 1 diabetes (T1D) were 4.12 (1.99-8.53), 2.95 (2.17-4.02), and 2.40 (1.09-5.31), respectively. In multivariable-adjusted analysis, individuals with T2D diagnosed < 45 years of age [ß 95%CI: 0.025 (0.009,0.040)] had a larger increase in LogMAR. The ß (95%CI) for LogMAR associated with T1D was 0.044 (0.014, 0.073). CONCLUSION: The younger age at the diagnosis of diabetes is associated with a larger relative risk of incident ocular diseases and greater vision loss.

13.
BMJ Neurol Open ; 6(1): e000570, 2024.
Article in English | MEDLINE | ID: mdl-38646507

ABSTRACT

Background: Alzheimer's disease (AD) and age-related macular degeneration (AMD) share similar pathological features, suggesting common genetic aetiologies between the two. Investigating gene associations between AD and AMD may provide useful insights into the underlying pathogenesis and inform integrated prevention and treatment for both diseases. Methods: A stratified quantile-quantile (QQ) plot was constructed to detect the pleiotropy among AD and AMD based on genome-wide association studies data from 17 008 patients with AD and 30 178 patients with AMD. A Bayesian conditional false discovery rate-based (cFDR) method was used to identify pleiotropic genes. UK Biobank was used to verify the pleiotropy analysis. Biological network and enrichment analysis were conducted to explain the biological reason for pleiotropy phenomena. A diagnostic test based on gene expression data was used to predict biomarkers for AD and AMD based on pleiotropic genes and their regulators. Results: Significant pleiotropy was found between AD and AMD (significant leftward shift on QQ plots). APOC1 and APOE were identified as pleiotropic genes for AD-AMD (cFDR <0.01). Network analysis revealed that APOC1 and APOE occupied borderline positions on the gene co-expression networks. Both APOC1 and APOE genes were enriched on the herpes simplex virus 1 infection pathway. Further, machine learning-based diagnostic tests identified that APOC1, APOE (areas under the curve (AUCs) >0.65) and their upstream regulators, especially ZNF131, ADNP2 and HINFP, could be potential biomarkers for both AD and AMD (AUCs >0.8). Conclusion: In this study, we confirmed the genetic pleiotropy between AD and AMD and identified APOC1 and APOE as pleiotropic genes. Further, the integration of multiomics data identified ZNF131, ADNP2 and HINFP as novel diagnostic biomarkers for AD and AMD.

14.
J Alzheimers Dis Rep ; 8(1): 411-422, 2024.
Article in English | MEDLINE | ID: mdl-38549631

ABSTRACT

Background: Limited knowledge exists regarding the association between dementia incidence and vitamin D insufficiency/deficiency across seasons. Objective: This study aimed to evaluate the impact of seasonal serum vitamin D (25(OH)D) levels on dementia and its subtypes, considering potential modifiers. Methods: We analyzed 193,003 individuals aged 60-73 at baseline (2006-2010) from the UK Biobank cohort, with follow-up until 2018. 25(OH)D were measured at baseline, and incident dementia cases were identified through hospital records, death certificates, and self-reports. Results: Out of 1,874 documented all-cause dementia cases, the median follow-up duration was 8.9 years. Linear and nonlinear associations between 25(OH)D and dementia incidence across seasons were observed. In multivariable-adjusted analysis, 25(OH)D deficiency was associated with a 1.5-fold (95% CIs: 1.2-2.0), 2.2-fold (1.5-3.0), 2.0-fold (1.5-2.7), and 1.7-fold (1.3-2.3) increased incidence of all-cause dementia in spring, summer, autumn, and winter, respectively. Adjusting for seasonal variations, 25(OH)D insufficiency and deficiency were associated with a 1.3-fold (1.1-1.4) and 1.8-fold (1.6-2.2) increased dementia incidence, respectively. This association remained significant across subgroups, including baseline age, gender, and education levels. Furthermore, 25(OH)D deficiency was associated with a 1.4-fold (1.1-1.8) and 1.5-fold (1.1-2.0) higher incidence of Alzheimer's disease and vascular dementia, respectively. These associations remained significant across all subgroups. Conclusions: 25(OH)D deficiency is associated with an increased incidence of dementia and its subtypes throughout the year.

15.
Am J Ophthalmol ; 263: 214-230, 2024 07.
Article in English | MEDLINE | ID: mdl-38438095

ABSTRACT

PURPOSE: To evaluate the diagnostic accuracy of artificial intelligence (AI)-based automated diabetic retinopathy (DR) screening in real-world settings. DESIGN: Systematic review and meta-analysis METHODS: We conducted a systematic review of relevant literature from January 2012 to August 2022 using databases including PubMed, Scopus and Web of Science. The quality of studies was evaluated using Quality Assessment for Diagnostic Accuracy Studies 2 (QUADAS-2) checklist. We calculated pooled accuracy, sensitivity, specificity, and diagnostic odds ratio (DOR) as summary measures. The study protocol was registered with the International Prospective Register of Systematic Reviews (PROSPERO - CRD42022367034). RESULTS: We included 34 studies which utilized AI algorithms for diagnosing DR based on real-world fundus images. Quality assessment of these studies indicated a low risk of bias and low applicability concern. Among gradable images, the overall pooled accuracy, sensitivity, specificity, and DOR were 81%, 94% (95% CI: 92.0-96.0), 89% (95% CI: 85.0-92.0) and 128 (95% CI: 80-204) respectively. Sub-group analysis showed that, when acceptable quality imaging could be obtained, non-mydriatic fundus images had a better DOR of 143 (95% CI: 82-251) and studies using 2 field images had a better DOR of 161 (95% CI 74-347). Our meta-regression analysis revealed a statistically significant association between DOR and variables such as the income status, and the type of fundus camera. CONCLUSION: Our findings indicate that AI algorithms have acceptable performance in screening for DR using fundus images compared to human graders. Implementing a fundus camera with AI-based software has the potential to assist ophthalmologists in reducing their workload and improving the accuracy of DR diagnosis.


Subject(s)
Artificial Intelligence , Diabetic Retinopathy , Humans , Diabetic Retinopathy/diagnosis , Reproducibility of Results , Sensitivity and Specificity , Mass Screening/methods , Algorithms
16.
Invest Ophthalmol Vis Sci ; 65(3): 12, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38466289

ABSTRACT

Purpose: Glaucoma, a leading cause of blindness worldwide, is suspected to exhibit a notable association with psychological disturbances. This study aimed to investigate epidemiological associations and explore shared genetic architecture between glaucoma and mental traits, including depression and anxiety. Methods: Multivariable logistic regression and Cox proportional hazards regression models were employed to investigate longitudinal associations based on UK Biobank. A stepwise approach was used to explore the shared genetic architecture. First, linkage disequilibrium score regression inferred global genetic correlations. Second, MiXeR analysis quantified the number of shared causal variants. Third, specific shared loci were detected through conditional/conjunctional false discovery rate (condFDR/conjFDR) analysis and characterized for biological insights. Finally, two-sample Mendelian randomization (MR) was conducted to investigate bidirectional causal associations. Results: Glaucoma was significantly associated with elevated risks of hospitalized depression (hazard ratio [HR] = 1.54; 95% confidence interval [CI], 1.01-2.34) and anxiety (HR = 2.61; 95% CI, 1.70-4.01) compared to healthy controls. Despite the absence of global genetic correlations, MiXeR analysis revealed 300 variants shared between glaucoma and depression, and 500 variants shared between glaucoma and anxiety. Subsequent condFDR/conjFDR analysis discovered 906 single-nucleotide polymorphisms (SNPs) jointly associated with glaucoma and depression and two associated with glaucoma and anxiety. The MR analysis did not support robust causal associations but indicated the existence of pleiotropic genetic variants influencing both glaucoma and depression. Conclusions: Our study enhances the existing epidemiological evidence and underscores the polygenic overlap between glaucoma and mental traits. This observation suggests a correlation shaped by pleiotropic genetic variants rather than being indicative of direct causal relationships.


Subject(s)
Depression , Glaucoma , Humans , Anxiety/genetics , Blindness , Depression/epidemiology , Depression/genetics , Glaucoma/genetics , Linkage Disequilibrium
17.
Aging Cell ; 23(5): e14125, 2024 05.
Article in English | MEDLINE | ID: mdl-38380547

ABSTRACT

It is unclear how metabolomic age is associated with the risk of a wide range of chronic diseases. Our analysis included 110,692 participants (training: n = 27,673; testing: n = 27,673; validating: n = 55,346) aged 39-71 years at baseline (2006-2010) from the UK Biobank. Incident chronic diseases were identified using inpatient records, or death registers until January 2021. Predicted metabolomic age was trained and tested based on 168 metabolomics. Metabolomic age was linked to the risk of 50 diseases in the validation dataset. The median follow-up duration for individual diseases ranged from 11.2 years to 11.9 years. After controlling for false discovery rate, chronological age-adjusted age gap (CAAG) was significantly associated with the incidence of 25 out of 50 chronic diseases. After adjustment for full covariates, associations with 15 chronic diseases remained significant. Greater CAAG was associated with increased risk of eight cardiometabolic disorders (including cardiovascular diseases and diabetes), some cancers, alcohol use disorder, chronic obstructive pulmonary disease, chronic kidney disease, chronic liver disease and age-related macular degeneration. The association between CAAG and risk of peripheral vascular disease, other cardiac diseases, fracture, cataract and thyroid disorder was stronger among individuals with unhealthy diet than in those with healthy diet. The association between CAAG and risk of some conditions was stronger in younger individuals, those with metabolic disorders or low education. Metabolomic age plays an important role in the development of multiple chronic diseases. Healthy diet and high education may mitigate the risk for some chronic diseases due to metabolomic age acceleration.


Subject(s)
Independent Living , Humans , Middle Aged , Chronic Disease , Prospective Studies , Aged , Male , Female , Adult , Risk Factors , Metabolomics
18.
BMC Neurol ; 24(1): 71, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38378514

ABSTRACT

BACKGROUND: Little is known regarding the leading risk factors for dementia/Alzheimer's disease (AD) in individuals with and without APOE4. The identification of key risk factors for dementia/Alzheimer's disease (AD) in individuals with and without the APOE4 gene is of significant importance in global health. METHODS: Our analysis included 110,354 APOE4 carriers and 220,708 age- and sex-matched controls aged 40-73 years at baseline (between 2006-2010) from UK Biobank. Incident dementia was ascertained using hospital inpatient, or death records until January 2021. Individuals of non-European ancestry were excluded. Furthermore, individuals without medical record linkage were excluded from the analysis. Moderation analysis was tested for 134 individual factors. RESULTS: During a median follow-up of 11.9 years, 4,764 cases of incident all-cause dementia and 2065 incident AD cases were documented. Hazard ratios (95% CIs) for all-cause dementia and AD associated with APOE4 were 2.70(2.55-2.85) and 3.72(3.40-4.07), respectively. In APOE4 carriers, the leading risk factors for all-cause dementia included low self-rated overall health, low household income, high multimorbidity risk score, long-term illness, high neutrophil percentage, and high nitrogen dioxide air pollution. In non-APOE4 carriers, the leading risk factors included high multimorbidity risk score, low overall self-rated health, low household income, long-term illness, high microalbumin in urine, high neutrophil count, and low greenspace percentage. Population attributable risk for these individual risk factors combined was 65.1%, and 85.8% in APOE4 and non-APOE4 carriers, respectively. For 20 risk factors including multimorbidity risk score, unhealthy lifestyle habits, and particulate matter air pollutants, their associations with incident dementia were stronger in non-APOE4 carriers. For only 2 risk factors (mother's history of dementia, low C-reactive protein), their associations with incident all-cause dementia were stronger in APOE4 carriers. CONCLUSIONS: Our findings provide evidence for personalized preventative approaches to dementia/AD in APOE4 and non-APOE4 carriers. A mother's history of dementia and low levels of C-reactive protein were more important risk factors of dementia in APOE4 carriers whereas leading risk factors including unhealthy lifestyle habits, multimorbidity risk score, inflammation and immune-related markers were more predictive of dementia in non-APOE4 carriers.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/genetics , Apolipoprotein E4/genetics , Biomarkers , C-Reactive Protein/analysis , Genotype , Retrospective Studies
19.
Transl Vis Sci Technol ; 13(1): 2, 2024 01 02.
Article in English | MEDLINE | ID: mdl-38165718

ABSTRACT

Purpose: This study aimed to investigate the association between quantitative retinal vascular measurements and the risk of all-cause and premature mortality. Methods: In this population-based cohort study using the UK Biobank data, we employed the Retina-based Microvascular Health Assessment System to assess fundus images for image quality and extracted 392 retinal vascular measurements per fundus image. These measurements encompass six categories of vascular features: caliber, density, length, tortuosity, branching angle, and complexity. Univariate Cox regression models were used to identify potential indicators of mortality risk using data on all-cause and premature mortality from death registries. Multivariate Cox regression models were then used to test these associations while controlling for confounding factors. Results: The final analysis included 66,415 participants. After adjusting for demographic, health, and lifestyle factors and genetic risk score, 18 and 10 retinal vascular measurements were significantly associated with all-cause mortality and premature mortality, respectively. In the fully adjusted model, the following measurements of different vascular features were significantly associated with all-cause mortality and premature mortality: arterial bifurcation density (branching angle), number of arterial segments (complexity), interquartile range and median absolute deviation of arterial curve angle (tortuosity), mean and median values of mean pixel widths of all arterial segments in each image (caliber), skeleton density of arteries in macular area (density), and minimum venular arc length (length). Conclusions: The study revealed 18 retinal vascular measurements significantly associated with all-cause mortality and 10 associated with premature mortality. Those identified parameters should be further studied for biological mechanisms connecting them to increased mortality risk. Translational Relevance: This study identifies retinal biomarkers for increased mortality risk and provides novel targets for investigating the underlying biological mechanisms.


Subject(s)
Retinal Vessels , UK Biobank , Humans , Retinal Vessels/diagnostic imaging , Cohort Studies , Biological Specimen Banks , Retina/diagnostic imaging
20.
Biochim Biophys Acta Mol Basis Dis ; 1870(2): 166961, 2024 02.
Article in English | MEDLINE | ID: mdl-37979732

ABSTRACT

Disruption of intervertebral disc (IVD) homeostasis caused by oxidative stress and nucleus pulposus cell (NPC) senescence is a main cause of intervertebral disc degeneration (IDD). The sonic hedgehog (Shh) pathway plays an important role in IVD development, but its roles in IDD are unknown. This study aimed to investigate the effects of the Shh pathway on the alleviation of IDD and the related mechanisms. In vivo, the effect of the Shh pathway on IVD homeostasis was studied by intraperitoneal injection of recombinant Shh (rShh) and GANT61 based on puncture-induced IDD. GANT61, lentivirus-coated sh-Gli1 and rShh were used to investigate the role and mechanism of the Shh pathway in NPCs based on senescence induced by Braco19 and oxidative stress induced by TBHP. Shh pathway expression decreased, and senescence and oxidative stress increased with age. Intraperitoneal injection of rShh activated the Shh pathway to suppress oxidative stress and NPC senescence and consequently alleviated needle puncture-induced IDD. In vitro, the Shh pathway upregulated glutathione peroxidase 4 (GPX4) expression to suppress oxidative stress and senescence in NPCs. Moreover, GPX4 suppression in NPCs by si-GPX4 significantly reduced the protective effect of the Shh pathway on oxidative stress and senescence in NPCs. Our results demonstrate for the first time that the Shh pathway plays a key role in the alleviation of IDD by suppressing oxidative stress and cell senescence in NP tissues. This study provides a new potential target for the prevention and reversal of IDD.


Subject(s)
Intervertebral Disc Degeneration , Nucleus Pulposus , Humans , Nucleus Pulposus/metabolism , Intervertebral Disc Degeneration/metabolism , Hedgehog Proteins/genetics , Hedgehog Proteins/metabolism , Oxidative Stress , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL