Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Type of study
Language
Publication year range
1.
Int J Mol Sci ; 25(15)2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39125596

ABSTRACT

Ethylene-Responsive Factor (ERF) is a key element found in the middle and lower reaches of the ethylene signal transduction pathway. It is widely distributed in plants and plays important roles in plant growth and development, hormone signal transduction, and various stress processes. Although there is research on AP/ERF family members, research on AP2/ERF in Osmanthus fragrans is lacking. Thus, in this work, AP2/ERF in O. fragrans was extensively and comprehensively analyzed. A total of 298 genes encoding OfAP2/ERF proteins with complete AP2/ERF domains were identified. Based on the number of AP2/ERF domains and the similarity among amino acid sequences between AP2/ERF proteins from A. thaliana and O. fragrans, the 298 putative OfAP2/ERF proteins were divided into four different families, including AP2 (45), ERF (247), RAV (5), and SOLOIST (1). In addition, the exon-intron structure characteristics of these putative OfAP2/ERF genes and the conserved protein motifs of their encoded OfAP2/ERF proteins were analyzed, and the results were found to be consistent with those of the population classification. A tissue-specific analysis showed the spatiotemporal expression of OfAP2/ERF in the stems and leaves of O. fragrans at different developmental stages. Specifically, 21 genes were not expressed in any tissue, while high levels of expression were found for 25 OfAP2/ERF genes in several tissues, 60 genes in the roots, 34 genes in the stems, 37 genes in young leaves, 34 genes in old leaves, 32 genes in the early flowering stage, 18 genes in the full flowering stage, and 37 genes in the late flowering stage. Quantitative RT-PCR experiments showed that OfERF110a and OfERF110b had the highest expression levels at the full-bloom stage (S4), and this gradually decreased with the senescence of petals. The expression of OfERF119c decreased first and then increased, while the expression levels of OfERF4c and OfERF5a increased constantly. This indicated that these genes may play roles in flower senescence and the ethylene response. In the subsequent subcellular localization experiments, we found that ERF1-4 was localized in the nucleus, indicating that it was expressed in the nucleus. In yeast self-activation experiments, we found that OfERF112, OfERF228, and OfERF23 had self-activation activity. Overall, these results suggest that OfERFs may have the function of regulating petal senescence in O. fragrans.


Subject(s)
Gene Expression Regulation, Plant , Multigene Family , Oleaceae , Phylogeny , Plant Proteins , Transcription Factors , Plant Proteins/genetics , Plant Proteins/metabolism , Oleaceae/genetics , Oleaceae/metabolism , Oleaceae/growth & development , Transcription Factors/genetics , Transcription Factors/metabolism , Transcription Factor AP-2/genetics , Transcription Factor AP-2/metabolism , Ethylenes/metabolism , Amino Acid Sequence
2.
Sensors (Basel) ; 24(14)2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39065977

ABSTRACT

Wearable sensors, specifically microneedle sensors based on electrochemical methods, have expanded extensively with recent technological advances. Today's wearable electrochemical sensors present specific challenges: they show significant modulus disparities with skin tissue, implying possible discomfort in vivo, especially over extended wear periods or on sensitive skin areas. The sensors, primarily based on polyethylene terephthalate (PET) or polyimide (PI) substrates, might also cause pressure or unease during insertion due to the skin's irregular deformation. To address these constraints, we developed an innovative, wearable, all-fiber-structured electrochemical sensor. Our composite sensor incorporates polyurethane (PU) fibers prepared via electrospinning as electrode substrates to achieve excellent adaptability. Electrospun PU nanofiber films with gold layers shaped via thermal evaporation are used as base electrodes with exemplary conductivity and electrochemical catalytic attributes. To achieve glucose monitoring, gold nanofibers functionalized by gold nanoflakes (AuNFs) and glucose oxidase (GOx) serve as the working electrode, while Pt nanofibers and Ag/AgCl nanofibers serve as the counter and reference electrode. The acrylamide-sodium alginate double-network hydrogel synthesized on electrospun PU fibers serves as the adhesive and substance-transferring layer between the electrodes. The all-fiber electrochemical sensor is assembled layer-by-layer to form a robust structure. Given the stretchability of PU nanofibers coupled with a high specific surface area, the manufactured porous microneedle glucose sensor exhibits enhanced stretchability, superior sensitivity at 31.94 µA (lg(mM))-1 cm-2, a broad detection range (1-30 mM), and a significantly low detection limit (1 mM, S/N = 3), as well as satisfactory biocompatibility. Therefore, the novel electrochemical microneedle design is well-suited for wearable or even implantable continuous monitoring applications, thereby showing promising significant potential within the global arena of wearable medical technology.


Subject(s)
Biosensing Techniques , Nanofibers , Polyurethanes , Wearable Electronic Devices , Humans , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , Polyurethanes/chemistry , Nanofibers/chemistry , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation , Electrodes , Gold/chemistry , Glucose Oxidase/chemistry , Glucose/analysis
3.
Poult Sci ; 99(12): 6371-6377, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33248552

ABSTRACT

We previously reported that blue eggshell color in chickens is associated with a partial endogenous retroviral (EAV-HP) insertion in the promoter region of the solute carrier organic anion transporter family member 1B3 (SLCO1B3) gene. The EAV-HP sequence includes numerous regulatory elements, which may modulate the expression of adjacent genes. To determine whether this insertion influences the expression of neighboring genes, we screened the expression of solute carrier organic anion transporter family members 1C1, 1B1 (SLCO1C1, SLCO1B1), and SLCO1B3 in 13 and 10 tissues from female and male Yimeng chickens, respectively. We observed that the insertion only significantly modulated the expression of SLCO1B3 and did not majorly affect that of SLCO1C1 and SLCO1B1. High expression of SLCO1B3 was detected in the shell gland, magnum, isthmus, and vagina of the oviduct in female blue-eggshell chickens. We also observed ectopic expression of SLCO1B3 in the testes of male chickens. SLCO1B3 is typically highly expressed in the liver; however, the EAV-HP insertion significantly reduces SLCO1B3 expression. As a liver-specific transporter, a reduction in the expression of SLCO1B3 may affect liver metabolism, particularly that of bile acids. We also detected higher ectopic expression of SLCO1B3 in the lungs of birds heterozygous for the EAV-HP insertion than in homozygous genotypes. In conclusion, we confirmed that the EAV-HP insertion modifies SLCO1B3 expression, and showed, for the first time, similar expression profile of this gene in all parts of the oviduct in females and testis in males. We also observed different levels of SLCO1B3 expression in the liver, which were associated with the EAV-HP insertion, and significantly higher expression in the lungs of birds with heterozygous genotype. The effects of these changes in the SLCO1B3 expression pattern on the function of the tissues warrant further investigation.


Subject(s)
5' Flanking Region , Chickens , Egg Shell , Endogenous Retroviruses , Gene Expression , Organic Anion Transporters, Sodium-Independent , 5' Flanking Region/genetics , Animals , Chickens/genetics , Chickens/metabolism , Egg Shell/metabolism , Endogenous Retroviruses/genetics , Female , Male , Organic Anion Transporters, Sodium-Independent/genetics , Organic Anion Transporters, Sodium-Independent/metabolism , Ovum/metabolism , Pigmentation/genetics
SELECTION OF CITATIONS
SEARCH DETAIL