Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 100
Filter
1.
Food Res Int ; 194: 114878, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39232516

ABSTRACT

There has been a growing interest in incorporating sprouted wheat wholemeal (SWW) into whole grain baking, driven by its heightened nutritional content and improved nutrient bioavailability. This study aimed to assess how substituting soft wheat flour (SWF) with various levels of wheat wholemeal (unsprouted and sprouted) impacts the quality and sensory characteristics of hard pretzel sticks, which are globally enjoyed as popular snacks. The dough samples containing wholemeal did not demonstrate the same extensibility as the SWF dough sample. Additionally, substituting SWF with wholemeal increased the resistance to extension. Analysis of the Raman spectra of SWF and two other selected dough samples containing 75 % unsprouted wheat wholemeal (UWW) or SWW indicated α-helix as the dominant protein secondary structure. As the ratio of wholemeal to SWF increased in both unsprouted and sprouted wheat pretzel samples, protein and fiber content increased and starch content decreased, resulting in a decreased peak viscosity in an RVA (Rapid Visco Analyzer) test. The findings also showed no significant difference in hardness between the SWF pretzel sample and all other samples (p > 0.05), except when SWF was replaced with the highest level (75 %) of SWW, resulting in a significantly softer texture. Color analysis revealed that the introduction of wholemeal led to a decrease in the L* value, indicating a darker surface appearance in the samples, likely due to the presence of bran. Finally, sensory evaluation determined that replacing SWF with 25 % SWW resulted in the creation of a sample most similar to SWF in terms of sensory attributes. This research paves the way for future studies and advancements in the formulation and analysis of pretzel dough, creating opportunities to improve both the quality of the product and consumer satisfaction.


Subject(s)
Flour , Triticum , Triticum/chemistry , Flour/analysis , Humans , Nutritive Value , Taste , Dietary Fiber/analysis , Viscosity , Hardness , Bread/analysis , Whole Grains/chemistry , Food Handling/methods , Snacks , Female , Male , Adult , Starch/chemistry , Cooking/methods
2.
Mol Biol Rep ; 51(1): 910, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39150575

ABSTRACT

Cytoplasmic male sterility has been a popular genetic tool in development of hybrids. The molecular mechanism behind maternal sterility varies from crop to crop. An understanding of underlying mechanism can help in development of new functional CMS gene in crops which lack effective and stable CMS systems. In crops where seed or fruit is the commercial product, fertility must be recovered in F1 hybrids so that higher yield gains can be realized. This necessitates the presence of fertility restorer gene (Rf) in nucleus of male parent to overcome the effect of sterile cytoplasm. Fertility restoring genes have been identified in crops like wheat, maize, sunflower, rice, pepper, sugar beet, pigeon pea etc. But in crops like eggplant, bell pepper, barley etc. unstable fertility restorers hamper the use of Cytoplasmic genic male sterility (CGMS) system. Stability of CGMS system is influenced by environment, genetic background or interaction of these factors. This review thus aims to understand the genetic mechanisms controlling mitochondrial-nuclear interactions required to design strong and stable restorers without any pleiotropic effects in F1 hybrids.


Subject(s)
Cytoplasm , Fertility , Plant Infertility , Plant Infertility/genetics , Cytoplasm/metabolism , Cytoplasm/genetics , Fertility/genetics , Crops, Agricultural/genetics , Plant Breeding/methods , Gene Expression Regulation, Plant/genetics , Cell Nucleus/metabolism , Cell Nucleus/genetics
3.
Food Sci Nutr ; 12(7): 5188-5200, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39055197

ABSTRACT

This research was aimed to investigate the utilization of mung bean starch as an innovative edible coating material to enhance the shelf-life of cut papaya fruits. The study focused on the extraction process of mung bean starch and its subsequent characterization through various analyses. Particle size (142.3 ± 1.24 nm), zeta potential (-25.52 ± 1.02 mV), morphological images, Fourier transform infrared (FTIR) spectra, and thermal stability (68.36 ± 0.15°C) were assessed to determine the mung bean starch properties. The functional properties, such as bulk density (0.51 ± 0.004 g/cm3) and tapped density (0.62 ± 0.010 g/cm3), angle of repose (21.61°), swelling power (12.26 ± 0.25%), and minimum gelation concentration (4.01 ± 1.25%), were examined to detect its potential as a coating base material. Subsequently, the prepared mung bean starch coating solution (1%, 2%, 3%, 4%, and 5%) was applied to papaya fruits and the coated fruits' physicochemical characteristics evaluated during storage. These characteristics encompassed color, weight loss, pH shifts, total soluble solids, titratable acidity, vitamin C content, fruit firmness, microbial analysis, and sensory attributes. The results revealed that starch coating on papaya maintained its color, reduced weight loss, preserved vitamin C, and delayed firmness loss, enhancing shelf-life when compared to control sample. These findings demonstrated the effectiveness of mung bean starch coatings in preserving papaya fruits. The research made a significant contribution to the use of mung bean starch as a potential coating material for improving the shelf-life of papaya fruits. This finding has great promise for the field of food preservation and quality control.

4.
Int J Biol Macromol ; 277(Pt 2): 134170, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39067731

ABSTRACT

Agricultural waste presents a significant environmental challenge due to improper disposal and management practices, contributing to soil degradation, biodiversity loss, and pollution of water and air resources. To address these issues, there is a growing emphasis on the valorization of agricultural waste. Cellulose, a major component of agricultural waste, offers promising opportunities for resource utilization due to its unique properties, including biodegradability, biocompatibility, and renewability. Thus, this review explored various types of agricultural waste, their chemical composition, and pretreatment methods for cellulose extraction. It also highlights the significance of rice straw, sugarcane bagasse, and other agricultural residues as cellulose-rich resources. Among the various membrane fabrication techniques, phase inversion is highly effective for creating porous membranes with controlled thickness and uniformity, while electrospinning produces nanofibrous membranes with high surface area and exceptional mechanical properties. The review further explores the separation of pollutants including using cellulose membranes, demonstrating their potential in environmental remediation. Hence, by valorizing agricultural residues into functional materials, this approach addresses the challenge of agricultural waste management and contributes to the development of innovative solutions for pollution control and water treatment.


Subject(s)
Agriculture , Cellulose , Membranes, Artificial , Cellulose/chemistry , Agriculture/methods , Biodegradation, Environmental , Environmental Pollutants/chemistry , Environmental Pollutants/isolation & purification
6.
Carbohydr Polym ; 339: 122228, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38823903

ABSTRACT

Meat products consumption is rising globally, but concerns about sustainability, fat content, and shelf life. Synthetic additives and preservatives used for extending the shelf life of meat often carry health and environmental drawbacks. Seed mucilage, natural polysaccharides, possesses unique functional properties like water holding, emulsifying, and film forming, offering potential alternatives in meat processing and preservation. This study explores the application of seed mucilage from diverse sources (e.g., flaxseed, psyllium, basil) in various meat and meat products processing and preservation. Mucilage's water-holding and emulsifying properties can potentially bind fat and decrease the overall lipid content in meat and meat-based products. Moreover, antimicrobial and film-forming properties of mucilage can potentially inhibit microbial growth and reduce oxidation, extending the shelf life. This review emphasizes the advantages of incorporating mucilage into processing and coating strategies for meat and seafood products.


Subject(s)
Food Preservation , Meat Products , Plant Mucilage , Seeds , Seeds/chemistry , Meat Products/analysis , Plant Mucilage/chemistry , Food Preservation/methods , Flax/chemistry , Biopolymers/chemistry , Polysaccharides/chemistry , Animals , Psyllium/chemistry , Food Handling/methods
7.
Food Sci Nutr ; 12(5): 3150-3163, 2024 May.
Article in English | MEDLINE | ID: mdl-38726405

ABSTRACT

Polysaccharides from non-conventional sources, such as fruits, have gained significant attention recently. Aegle marmelos (Bael), a non-conventional fruit, is an excellent source of biologically active components with potential indigenous therapeutic and food applications. Apart from polyphenolic components, this is an excellent source of mucilaginous polysaccharides. Polysaccharides are one the major components of bael fruit, having a high amount of galactose and glucuronic acid, which contributes to its potential therapeutic properties. Therefore, this review emphasizes the conventional and emerging techniques of polysaccharide extraction from bael fruit. Insight into the attributes of polysaccharide components, their techno-functional properties, characterization of bael fruit polysaccharide, emulsifying properties, binding properties, reduction of hazardous dyes, application of polysaccharides in film formation, application of polysaccharide as a nanocomposite, and biological activities of bael fruit polysaccharides are discussed. This review also systematically overviews the relationship between extraction techniques, structural characteristics, and biological activities. Additionally, recommendations, future perspectives, and new valuable insight towards better utilization of bael fruit polysaccharide have been given importance, which can be promoted in the long term.

8.
Int J Pharm ; 659: 124234, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38763310

ABSTRACT

In this study, we have proposed a novel approach that combines hyaluronic acid (HA), folic acid (FA), and celastrol (CLS) within a polymeric micelle system (CLS-HF/MLs), offering a dual-action strategy against breast cancer. Polymeric mixed micelles were prepared through the thin-film hydration method, and comprehensive quality control parameters were established, encompassing particle size, polydispersity index, zeta potential, surface morphology, encapsulation efficiency, drug content, in vitro drug release, and storage stability assessment. The average particle size of CLS-HF/MLs micelles was found to be 120 nm and their drug loading and encapsulation efficiencies were 15.9 % and 89.52 %, respectively. The in vitro release data showed that the CLS-HF/MLs targeted mixed micelles displayed a prolonged release profile compared to the free drug. Additionally, the stability of the developed polymeric mixed micelles was maintained for up to 8 weeks of storage in terms of particle size and drug content. Furthermore, both flow cytometry and confocal laser scanning microscopy studies indicated a significant enhancement in the cellular uptake efficiency and cytotoxicity of CLS-HF/MLs mixed micelles against MCF-7 cell line. In terms of pharmacokinetic analysis, the half-life and AUC values of CLS-HF/MLs mixed micelles were found to be approximately 4.71- and 7.36-folds higher than the values of free drug (CLS), respectively. The CLS-HF/MLs micelles exhibited remarkable antitumor efficacy (almost complete ablation of the 4 T1-cell bearing tumor xenografts mouse model) due to the dual receptor (CD44 and folate) targeting effects with minimal side effects. When considering the cumulative findings of our present research, it becomes evident that mixed micelles designed for chemotherapy offer a promising and potentially effective therapeutic avenue for the treatment of breast cancer.


Subject(s)
Antineoplastic Agents , Drug Liberation , Folic Acid , Hyaluronic Acid , Micelles , Pentacyclic Triterpenes , Polymers , Triterpenes , Xenograft Model Antitumor Assays , Animals , Humans , Female , Triterpenes/chemistry , Triterpenes/administration & dosage , Triterpenes/pharmacokinetics , Triterpenes/pharmacology , MCF-7 Cells , Polymers/chemistry , Folic Acid/chemistry , Folic Acid/administration & dosage , Hyaluronic Acid/chemistry , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Particle Size , Mice , Drug Carriers/chemistry , Mice, Nude , Mice, Inbred BALB C , Rats, Sprague-Dawley , Cell Survival/drug effects , Drug Stability
9.
Int J Biol Macromol ; 263(Pt 2): 130517, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38423444

ABSTRACT

Orally targeted delivery systems have attracted ample interest in colorectal cancer management. In this investigation, we developed Inositol hexaphosphate (IHP) loaded Tripolyphosphate (Tr) crosslinked Pectin (Pe) Chitosan (Ch) nanoparticles (IHP@Tr*Pe-Ch-NPs) and modified them with l-Carnitine (CE) (CE-IHP@Tr*Pe-Ch-NPs) to improve uptake in colon cells. The formulated CE-IHP@Tr*Pe-Ch-NPs displayed a monodisperse distribution with 219.3 ± 5.5 nm diameter and 30.17 mV surface charge. Cell-line studies revealed that CE-IHP@Tr*Pe-Ch-NPs exhibited excellent biocompatibility in J774.2 and decreased cell viability in DLD-1, HT-29, and MCF7 cell lines. More cell internalization was seen in HT-29 and MCF7 due to overexpression of the OCTN2 and ATB0,+ transporter (CE transporters) compared to DLD-1. The cell cycle profile, reactive oxygen species, apoptosis, and mitochondrial membrane potential assays were performed to explore the chemo-preventive mechanism of CE-IHP@Tr*Pe-Ch-NPs. Moreover, the in-silico docking studies revealed enhanced interactive behavior of CE-IHP@Tr*Pe-Ch-NPs, thereby proving their targeting ability. All the findings suggested that CE-IHP@Tr*Pe-Ch-NPs could be a promising drug delivery approach for colon cancer targeting.


Subject(s)
Chitosan , Nanoparticles , Humans , Phytic Acid , Pectins/pharmacology , Carnitine , MCF-7 Cells , Colon , Drug Carriers
10.
Biol Trace Elem Res ; 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38393487

ABSTRACT

Tannic acid (TA) is a metal chelating polyphenol that plays a crucial role in metal detoxification, but its modulatory role in co-exposure of these heavy metals' exposure needs to be explored. Cadmium (Cd) and nickel (Ni) are inorganic hazardous chemicals in the environment. Humans are prone to be exposed to the co-exposure of Cd and Ni, but the toxicological interactions of these metals are poorly defined. Present study was undertaken to study the preventive role of TA in Cd-Ni co-exposure-evoked hepato-renal toxicity in BALB/c mice. In the current investigation, increased oxidative stress in metal intoxicated groups was confirmed by elevated peroxidation of the lipids and significant lowering of endogenous antioxidant enzymes. Altered hepato-renal serum markers, DNA fragmentation, and histological alterations were also detected in the metal-treated groups. Present study revealed that Cd is a stronger toxicant than Ni and when co-exposure was administered, additive, sub-additive, and detrimental effects were observed. Prophylactic treatment with TA significantly reinstated the levels of lipid peroxidation (LPO), non-enzymatic, and enzymatic antioxidants. Moreover, it also restored the serum biomarker levels, DNA damage, and histoarchitecture of the given tissues. TA due to its metal chelating and anti-oxidative properties exhibited cyto- and genoprotective potential against Cd-Ni co-exposure-induced hepatic and renal injury.

11.
Mol Neurobiol ; 2023 Dec 04.
Article in English | MEDLINE | ID: mdl-38048031

ABSTRACT

Embryonic valproic acid (VPA) has been considered a potential risk factor for autism. Majority of studies indicated that targeting autism-associated alterations in VPA-induced autistic model could be promising in defining and designing therapeutics for autism. Numerous investigations in this field investigated the role of canonical Wnt signaling cascade in regulating the pathophysiology of autism. The impaired blood-brain barrier (BBB) permeability and mitochondrial dysfunction are some key implied features of the autistic brain. So, the current study was conducted to target canonical Wnt signaling pathway with a natural polyphenolic modulator cum antioxidant namely fisetin. A single dose of intraperitoneal VPA sodium salt (400 mg/kg) at gestational day 12.5 induced developmental delays, social behaviour impairments (tube dominance test), and anxiety-like behaviour (sucrose preference test) similar to autism. VPA induced mitochondrial damage and over-activated the canonical Wnt signaling which further increased the blood-brain barrier (BBB) disruption, apoptosis, and neuronal damage. Our findings revealed that oral administration of 10 mg/kg gestational fisetin (GD 13-till parturition) improved social and anxiety-like behaviour by modulating the ROS-regulated mitochondrial-canonical Wnt signaling. Moreover, fisetin controls BBB permeability, apoptosis, and neuronal damage in autism model proving its neuroprotective efficacy. Collectively, our findings revealed that fisetin-evoked modulation of the Wnt signaling cascade successfully relieved the associated symptoms of autism along with developmental delays in the model and indicates its potential as a bioceutical against autism.

12.
Biomater Adv ; 155: 213672, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37976833

ABSTRACT

In the present investigation, we have strategically synthesized Glutathione (GSH) stimuli-sensitive analogues using carbamate linkers (CL) of DOX (DOX-CL) and RB (RB-CL) which were then anchored to gold nanoparticles (Au-DOX-CL, Au-RB-CL) using mPEG as a spacer. It was observed that carbamate linkage (CL) with four carbon spacer is critical, to position the terminal thiol group, to access the carbamate group efficiently to achieve GSH-assisted release of DOX and RB in tumor-specific environment. When assessed for GSH reductase activity in MDA-MB 231 cell lines, Au-DOX-CL and Au-RB-CL showed nearly 4.18 and 3.13 fold higher GSH reductive activity as compared to the control group respectively. To achieve spatial tumor targeting with a high payload of DOX and RB, Au-DOX-CL and Au-RB-CL were encapsulated in the cell-penetrating peptide (CPP) modified liquid crystalline cubosomes i.e. CPP-Cu(Au@CL-DR). After internalization, the prototype nanocarriers release respective drugs at a precise GSH concentration inside the tumor tissues, amplifying drug concentration to a tune of five-fold. The drug concentrations remain within the therapeutic window for 72 h with a significant reduction of RB (7.8-fold) and DOX (6-fold) concentrations in vital organs, rendering reduced toxicity and improved survival. Overall, this constitutes a promising chemotherapeutic strategy against cancer and its potential application in the offing.


Subject(s)
Metal Nanoparticles , Neoplasms , Humans , Drug Carriers/chemistry , Gold/chemistry , Carbamates , Metal Nanoparticles/chemistry , Doxorubicin/pharmacology , Doxorubicin/chemistry , Doxorubicin/therapeutic use , Neoplasms/drug therapy , Glutathione/chemistry
13.
Biomacromolecules ; 24(12): 5780-5796, 2023 12 11.
Article in English | MEDLINE | ID: mdl-38006339

ABSTRACT

In the current study, we aimed to develop lyotropic crystalline nanoconstructs (LCNs) based on poly(l-glutamic acid) (PLG) with a two-tier strategy. The first objective was to confer pH-responsive charge conversion properties to facilitate the delivery of both doxorubicin (DOX) and buparvaquone (BPQ) in combination (B + D@LCNs) to harness their synergistic effects. The second goal was to achieve targeted delivery to sigma receptors within the tumor tissues. To achieve this, we designed a pH-responsive charge conversion system using a polymer consisting of poly(ethylenimine), poly(l-lysine), and poly(l-glutamic acid) (PLG), which was then covalently coupled with methoxybenzamide (MBA) for potential sigma receptor targeting. The resulting B + D@LCNs were further modified by surface functionalization with PLG-MBA to confer both sigma receptor targeting and pH-responsive charge conversion properties. Our observations indicated that at physiological pH 7.4, P/B + D-MBA@LCNs exhibited a negative charge, while under acidic conditions (pH 5.5, characteristic of the tumor microenvironment), they acquired a positive charge. The particle size of P/B + D-MBA@LCNs was determined to be 168.23 ± 2.66 nm at pH 7.4 and 201.23 ± 1.46 nm at pH 5.5. The crystalline structure of the LCNs was confirmed through small-angle X-ray scattering (SAXS) diffraction patterns. Receptor-mediated endocytosis, facilitated by P/B + D-MBA@LCNs, was confirmed using confocal laser scanning microscopy and flow cytometry. The P/B + D-MBA@LCNs formulation demonstrated a higher rate of G2/M phase arrest (55.20%) compared to free B + D (37.50%) and induced mitochondrial depolarization (59.39%) to a greater extent than P/B + D@LCNs (45.66%). Pharmacokinetic analysis revealed significantly improved area under the curve (AUC) values for both DOX and BPQ when administered as P/B + D-MBA@LCNs, along with enhanced tumor localization. Tumor regression studies exhibited a substantial reduction in tumor size, with P/B + D-MBA@LCNs leading to 3.2- and 1.27-fold reductions compared to B + D and nontargeted P/B + D@LCNs groups, respectively. In summary, this two-tier strategy demonstrates substantial promise for the delivery of a drug combination through the prototype formulation. It offers a potential chemotherapeutic option by minimizing toxic effects on healthy cells while maximizing therapeutic efficacy.


Subject(s)
Breast Neoplasms , Nanoparticles , Receptors, sigma , Humans , Female , Breast Neoplasms/drug therapy , Glutamic Acid , Scattering, Small Angle , X-Ray Diffraction , Doxorubicin/chemistry , Hydrogen-Ion Concentration , Receptors, sigma/therapeutic use , Nanoparticles/chemistry , Drug Carriers/chemistry , Tumor Microenvironment
14.
J Control Release ; 363: 290-348, 2023 11.
Article in English | MEDLINE | ID: mdl-37714434

ABSTRACT

Nanovesicles and bio-vesicles (BVs) have emerged as promising tools to achieve targeted cancer therapy due to their ability to overcome many of the key challenges currently being faced with conventional chemotherapy. These challenges include the diverse and often complex pathophysiology involving the progression of cancer, as well as the various biological barriers that circumvent therapeutic molecules reaching their target site in optimum concentration. The scientific evidence suggests that surface-functionalized nanovesicles and BVs camouflaged nano-carriers (NCs) both can bypass the established biological barriers and facilitate fourth-generation targeting for the improved regimen of treatment. In this review, we intend to emphasize the role of surface-functionalized nanovesicles and BVs camouflaged NCs through various approaches that lead to an improved internalization to achieve improved and targeted oncotherapy. We have explored various strategies that have been employed to surface-functionalize and biologically modify these vesicles, including the use of biomolecule functionalized target ligands such as peptides, antibodies, and aptamers, as well as the targeting of specific receptors on cancer cells. Further, the utility of BVs, which are made from the membranes of cells such as mesenchymal stem cells (MSCs), white blood cells (WBCs), red blood cells (RBCs), platelets (PLTs) as well as cancer cells also been investigated. Lastly, we have discussed the translational challenges and limitations that these NCs can encounter and still need to be overcome in order to fully realize the potential of nanovesicles and BVs for targeted cancer therapy. The fundamental challenges that currently prevent successful cancer therapy and the necessity of novel delivery systems are in the offing.


Subject(s)
Neoplasms , Humans , Neoplasms/drug therapy , Drug Delivery Systems , Ligands , Peptides/therapeutic use
15.
Nanomedicine (Lond) ; 18(15): 1005-1023, 2023 06.
Article in English | MEDLINE | ID: mdl-37530043

ABSTRACT

Aim: This investigation aims to repurpose venetoclax using hyaluronic acid-coated venetoclax nanocrystals (HA-VEN-NCs) to target breast cancer. Materials & methods: An antisolvent precipitation method was used to fabricate the nanocrystals and optimize them using central composite design. Hyaluronic acid (HA)-coated and -uncoated nanocrystals were compared in terms of in vitro drug release, cell line studies, CD44-expressing breast tumor cell binding capability and anticancer activity. Results: HA-VEN-NCs and venetoclax nanocrystals (VEN-NCs) showed pH-responsive drug-release behavior, exhibiting sustained release at pH 6.8. Our extensive in vitro cell line investigation showed that HA-VEN-NCs efficiently bind to CD44-expressing breast tumor cells and possess excellent anticancer activity (IC50: 2.00 µg/ml) compared with VEN-NCs. Conclusion: Our findings anticipate that HA-VEN-NCs could serve as valuable nanoplatforms for cancer treatments in the future.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Nanoparticles , Female , Humans , Antineoplastic Agents/chemistry , Breast Neoplasms/pathology , Cell Line, Tumor , Hyaluronan Receptors , Hyaluronic Acid/chemistry , Nanoparticles/chemistry
16.
Int J Biol Macromol ; 249: 126050, 2023 Sep 30.
Article in English | MEDLINE | ID: mdl-37517760

ABSTRACT

Recently, mucilage extraction from plant sources has been remarkably explored due to its potential applications. Several underutilized fruits such as Aegle marmelos are the potential source of mucilage that can be utilized for agri-food-pharma applications. Therefore, in this study, we explored vital functional and antimicrobial properties of Aegle marmelos nanomucilage. Spray drying conditions such as inlet temperature, feed flow, and atomization speed were optimized to assess the influence on yield and moisture content using response surface methodology. In addition, during the optimized spray drying conditions, the maximum mucilage yield was 16.23 % (w/w). The particle size (178.4 ± 5.06 nm) at the nanoscale, polydispersity index (0.432), and zeta potential (-16.4 ± 1.14 mV) confirmed the stability of the nanomucilage. Moreover, the spray-dried nanomucilage powder exhibited high thermal stability (55.70 J) and excellent industrially important techno-functional properties with water-holding capacity (8.01 ± 0.04 g/g), oil-holding capacity (3.43 ± 0.7 g/g), emulsifying capacity (91.50 ± 0.78 %), emulsifying stability (92.65 ± 0.46 %), solubility (89.36 ± 1.69 %), and foaming capacity (16.13 ± 0.41 %). Moreover, the powder showed strong antibiofilm activity against food-pathogenic bacteria, including Escherichia coli (73.52 ± 1.14 %) and Staphylococcus aureus (79.57 ± 1.23 %), with minimum inhibitory concentrations of 3.125 mg/mL and 1.562 mg/mL respectively. Overall, based on the above findings the spray-dried powder of Aegle marmelos fruit nanomucilage could be utilized as a potential functional ingredient in various food products formulations.


Subject(s)
Aegle , Anti-Infective Agents , Fruit , Powders , Anti-Infective Agents/pharmacology , Biofilms
17.
Urologiia ; (2): 66-72, 2023 May.
Article in Russian | MEDLINE | ID: mdl-37401707

ABSTRACT

PURPOSE: To assess the prescribing practices for overactive bladder (OAB) pharmacotherapy based on the prescription trend analysis across different specialties of India. METHOD: s: IQVIA (Quintiles and IMS Health) secondary sales audit (SSA), as well as a prescription audit for antimuscarinics and beta-3 adrenoceptor agonists (mirabegron) from 2014 to 2021, were analyzed. The data includes SSA data of various antimuscarinics like solifenacin, oxybutynin, tolterodine, darifenacin, trospium and mirabegron change in the prescription trend of antimuscarinics and mirabegron across different specialties; prescribers overlap analysis for solifenacin and mirabegron among Indian urologists were also analyzed. RESULTS: Urologists prescription rates of OAB drugs were 65% in 2016 and 54% in 2021. The rate of OAB medication prescription by non-urologist was highest from the surgeon (11%), followed by gynecologists (9%) and consultant physicians (8%) in 2021. In addition, among OAB medication prescription rates for antimuscarinics were 100% in 2016 and 58% in 2021 whereas for mirabegron, it was 0% in 2016 and 42% in 2021. Solifenacin was most frequently prescribed anticholinergics, followed by oxybutynin, tolterodine, darifenacin, and trospium. The proportion of prescribers of OAB medication among urologists was 38% in 2016 and 33% in 2021. Exclusive prescribers of solifenacin were 748 in 2018 and 739 in 2021 at the urologist, whereas for mirabegron, it was 961 in 2018 and 934 in 2021. The compound annual growth rate for prescription of the last 6 years (from 2016-2021) for solifenacin and mirabegron was -3% and 8% respectively. CONCLUSIONS: Urology remained a top prescribing specialty for OAB drugs, although prescription share increased at surgeon and consultant physician. OAB medicines prescriptions by urologists are shifting from leading antimuscarinic solifenacin to beta-agonist mirabegron. Data from this study will ultimately lead to the OAB medication preference by the specialist that could lead to more advanced OAB management.


Subject(s)
Urinary Bladder, Overactive , Urological Agents , Humans , Urinary Bladder, Overactive/drug therapy , Muscarinic Antagonists/therapeutic use , Solifenacin Succinate/therapeutic use , Tolterodine Tartrate/therapeutic use , Acetanilides/therapeutic use , Prescriptions , Urological Agents/therapeutic use
18.
Comput Struct Biotechnol J ; 21: 3590-3603, 2023.
Article in English | MEDLINE | ID: mdl-37520281

ABSTRACT

Understanding the biological roles of all genes only through experimental methods is challenging. A computational approach with reliable interpretability is needed to infer the function of genes, particularly for non-coding RNAs. We have analyzed genomic features that are present across both coding and non-coding genes like transcription factor (TF) and cofactor ChIP-seq (823), histone modifications ChIP-seq (n = 621), cap analysis gene expression (CAGE) tags (n = 255), and DNase hypersensitivity profiles (n = 255) to predict ontology-based functions of genes. Our approach for gene function prediction was reliable (>90% balanced accuracy) for 486 gene-sets. PubMed abstract mining and CRISPR screens supported the inferred association of genes with biological functions, for which our method had high accuracy. Further analysis revealed that TF-binding patterns at promoters have high predictive strength for multiple functions. TF-binding patterns at the promoter add an unexplored dimension of explainable regulatory aspects of genes and their functions. Therefore, we performed a comprehensive analysis for the functional-specificity of TF-binding patterns at promoters and used them for clustering functions to reveal many latent groups of gene-sets involved in common major cellular processes. We also showed how our approach could be used to infer the functions of non-coding genes using the CRISPR screens of coding genes, which were validated using a long non-coding RNA CRISPR screen. Thus our results demonstrated the generality of our approach by using gene-sets from CRISPR screens. Overall, our approach opens an avenue for predicting the involvement of non-coding genes in various functions.

19.
Comput Intell Neurosci ; 2023: 7735846, 2023.
Article in English | MEDLINE | ID: mdl-37455766

ABSTRACT

Audio classification and retrieval has been recognized as a fascinating field of endeavor for as long as it has existed due to the topic of identifying and choosing the most useful audio attributes. The categorization of audio files is significant not only in the area of multimedia applications but also in the disciplines of medicine, sound analysis, intelligent homes and cities, urban informatics, entertainment, and surveillance. This study introduces a new algorithm called the modified bacterial foraging optimization algorithm (MBFOA), which is based on a method that retrieves and classifies audio data. The goal of this algorithm is to reduce the computational complexity of existing techniques. Along with the combination of the peak estimated signal, the enhanced mel-frequency cepstral coefficient (EMFCC) and the enhanced power normalized cepstral coefficients (EPNCC) are used. These are then optimized using the fitness function utilizing MBFOA. The probabilistic neural network is used to differentiate between a music signal and a spoken signal from an audio source (PNN). It is next necessary to extract and list the characteristics that correspond to the class that was arrived at as a consequence of the categorization. When compared to other approaches that are somewhat similar, MBFOA demonstrates superior levels of sensitivity, specificity, and accuracy.


Subject(s)
Algorithms , Music , Neural Networks, Computer , Multimedia
20.
Phytopathology ; 113(5): 824-835, 2023 May.
Article in English | MEDLINE | ID: mdl-37352896

ABSTRACT

Begomoviruses, viz. squash leaf curl China virus and tomato leaf curl New Delhi virus causative diseases are major concerns of quantitative and qualitative losses in pumpkin (Cucurbita moschata) worldwide. Punjab Agricultural University (PAU) in India has identified a resistant source (PVR-1343) against mixed infection (MI-Sq/To) of these begomoviruses. Introgression of resistance in diverse genetic backgrounds requires the identification of quantitative trait loci (QTLs) associated with MI-Sq/To resistance. Phenotyping of 229 F2:3 progenies derived from the PVR-1343 × P-135 cross revealed digenic recessive inheritance against MI-Sq/To resistance in PVR-1343. To identify the genomic region, resistant and susceptible bulks were subjected to whole-genome resequencing along with their parents. The whole-genome resequence analysis of parents and bulks using QTLseq/QTLseqr approaches identified an overlapping 1.52 Mb region on chromosome 7 (qMI-Sq/To7.1), while chromosomal region spanning 0.87 Mb on chromosome17 (qMI-Sq/To17.1) was additionally identified by QTLseqr. However, the highest peak value on chromosome 7 with three algorithms {G', ∆(SNP-index) and -log10 (P value)} highlighted the major contribution of qMI-Sq/To7.1 in MI-Sq/To resistance. Nine polymorphic SNPs identified within the highly significant qMI-Sq/To7.1 region were converted into KASP markers. KASP genotyping of F2 individuals narrowed down the qMI-Sq/To7.1 interval to 103 kb region flanked by two markers, Cmo3914729 and Cmo4018182, which contained 16 annotated genes and accounted for 59.84% of phenotypic variation. The Cmo4018182 KASP marker accurately predicted disease reaction in 91% of diverse Cucurbita genotypes and showed nonsynonym substitutions in the coding region of putative candidate SYNTAXIN-121 gene. These findings pave the way for marker-assisted breeding and elucidating the underlying mechanism of begomovirus resistance in C. moschata.


Subject(s)
Begomovirus , Cucurbita , Quantitative Trait Loci/genetics , Chromosome Mapping , Cucurbita/genetics , Begomovirus/genetics , Plant Diseases/genetics , Plant Breeding , Polymorphism, Single Nucleotide/genetics , Disease Resistance/genetics
SELECTION OF CITATIONS
SEARCH DETAIL