Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Ultrastruct Pathol ; 48(1): 42-55, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38085153

ABSTRACT

Recent advancements in nanotechnology has opened up enormous possibilities in diverse sectors such as industries, agriculture, environmental remediation, electronics, medicine and varied industries. Among metal oxide nanoparticles zinc oxide nanoparticles has gained considerable attention due to their fascinating physiochemical properties. Rapid growth in the use of zinc oxide nanoparticles (ZnONPs) in daily household products, food and feed additives, biological products, medicine, as antimicrobial agents, electronics and agriculture, creates serious toxic potential risks of these engineered nanoparticles on living organisms. The aim of present study was to assess the effects of synthesized chemical ZnONPs and green ZnONPs on testicular tissue of Capra hircus (goat) in vitro. The reproductive stress was analyzed by ultrastructural damage, change in frequency of apoptotic cells and alteration in steroidogenic enzyme activity. The transmission electron micrographs of testicular cells after treatment with chemical and green ZnONPs at three doses (10 µg/ml, 20 µg/ml and 30 µg/ml) for exposure duration 4 h and 8 h illustrated that chemical nanoparticles induced more alterations, identified as ruptured nuclear membrane, condensation and margination of chromatin material in somatic cells and germ cells in the seminiferous tubules, presence of apoptotic bodies in nucleus of spermatocytes and spermatids, reduction in number of cell organelles, vacuolization and hyalinization of cytoplasm. Maximum damage was observed after treatment of testicular tissues with 30 µg/ml of chemical ZnONPs for 8 h exposure duration. However, the green ZnONPs were found to be less toxic as evidenced by few apoptotic characteristics in testicular cells. The results of fluorescence assay by acridine orange staining showed significant increase in the percentage of apoptotic cells in chemical treated groups as compared to green and control groups. Decreased enzyme activity of 3ß-Hydroxysteroid dehydrogenase and 17ß-Hydroxysteroid dehydrogenase was assayed in chemical ZnONPs than green ZnONPs treated groups. Our results confirm that chemical ZnONPs are significantly more toxic in comparison to green ZnONPs and adversely affects the male fertility.


Subject(s)
Metal Nanoparticles , Nanoparticles , Zinc Oxide , Male , Animals , Zinc Oxide/toxicity , Zinc Oxide/chemistry , Testis , Goats , Nanoparticles/toxicity , Nanoparticles/chemistry , Metal Nanoparticles/toxicity
2.
Environ Sci Pollut Res Int ; 29(56): 84243-84255, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35779216

ABSTRACT

In the nanoscience metal and metal oxide, nanoparticles have a prominent place because of their vast applications. Recent finding shows that in addition to size, there are other critical factors governing the biological response of nanoparticles. These factors include surface chemistry and shape that influences solubility, rate of diffusion, drug delivery, melting temperature, and colour of the nanoparticles. It is thus the present study that was aimed to investigate the effect of temperature on the shape and size of nanoparticles and related cytotoxicity of these particles on ovarian granulosa cells. Cupric oxide nanoparticles (CuONPs) were synthesized using a simple, efficient, and reproducible precipitation method involving the reduction of Cu metal salt with sodium hydroxide and then incubation of the precipitates at 70 °C for 5 h. Subsequently, this prepared sample was divided into 3 subsamples and incubated at 3 different temperatures, i.e. 70 °C, 150 °C, and 350 °C for 5 h to study the effect of temperature on the particles. The products were characterized by XRD, FTIR, HRTEM, and FESEM. Characterization of the particles revealed that all particles were monoclinic crystalline in nature and had a size range from 9 to 60 nm. Particles were of different shapes: spherical, needle, and capsule. The toxicity of each particle was determined on granulosa cells by exposing cells for 24 h at 2 different doses. Toxicological results showed the size and shape-related toxicity of nanoparticles where spherical shapes were significantly more toxic than capsule-shaped particles.


Subject(s)
Metal Nanoparticles , Nanoparticles , Animals , Female , Particle Size , Ovary , Goats , Nanoparticles/toxicity , Nanoparticles/chemistry , Granulosa Cells , Metal Nanoparticles/toxicity , Metal Nanoparticles/chemistry
3.
Environ Mol Mutagen ; 61(3): 369-392, 2020 03.
Article in English | MEDLINE | ID: mdl-31916619

ABSTRACT

Insecticides, a heterogeneous group of chemicals, are widely used in agriculture and household practices to avoid insect-inflicted damage. Extensive use of insecticides has contributed substantially to agricultural production and the prevention of deadly diseases by destroying their vectors. On the contrary, many of the insecticides are associated with several adverse health effects like neurological and psychological diseases, metabolic disorders, hormonal imbalance, and even cancer in non-target species, including humans. Reproduction, a very selective process that ensures the continuity of species, is affected to a greater extent by the rampant use of insecticides. In females, exposure to insecticides leads to reproductive incapacitation primarily through disturbances in ovarian physiology. Disturbed ovarian activities encompass the alterations in hormone synthesis, follicular maturation, ovulation process, and ovarian cycle, which eventually lead to decline in fertility, prolonged time-to-conceive, spontaneous abortion, stillbirths, and developmental defects. Insecticide-induced ovarian toxicity is effectuated by endocrine disruption and oxidative stress. Oxidative stress, which occurs due to suppression of antioxidant defense system, and upsurge of reactive oxygen and nitrogen species, potentiates DNA damage and expression of apoptotic and inflammatory markers. Insecticide exposure, in part, is responsible for ovarian malfunctioning through disruption of hypothalamic-pituitary-gonadal axis. The current article is focused on the adverse effects of insecticides on ovarian functioning, and consequently, on the reproductive efficacy of females. The possible strategies to combat insecticide-induced toxicity are also discussed in the latter part of this review. Environ. Mol. Mutagen. 61:369-392, 2020. © 2020 Wiley Periodicals, Inc.


Subject(s)
Endocrine Disruptors/toxicity , Insecticides/toxicity , Ovary/drug effects , Ovary/physiopathology , Animals , DNA Damage/drug effects , Environmental Pollutants/toxicity , Female , Humans , Infertility/chemically induced , Infertility/physiopathology , Ovary/physiology , Oxidative Stress/drug effects , Pest Control , Reproduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...