Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Brain ; 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38662784

ABSTRACT

Mutations in the SLC1A4 transporter lead to neurodevelopmental impairments, spastic tetraplegia, thin corpus callosum, and microcephaly in children. SLC1A4 catalyzes obligatory amino acid exchange between neutral amino acids, but the physiopathology of SLC1A4 disease mutations and progressive microcephaly remain unclear. Here, we examined the phenotype and metabolic profile of three Slc1a4 mouse models, including a constitutive Slc1a4-KO mouse, a knock-in mouse with the major human Slc1a4 mutation (Slc1a4-K256E), and a selective knockout of Slc1a4 in brain endothelial cells (Slc1a4tie2-cre). We show that Slc1a4 is a bona fide L-serine transporter at the BBB and that acute inhibition or deletion of Slc1a4 leads to a decrease in serine influx into the brain. This results in microcephaly associated with decreased L-serine content in the brain, accumulation of atypical and cytotoxic 1-deoxysphingolipids in the brain, neurodegeneration, synaptic and mitochondrial abnormalities, and behavioral impairments. Prenatal and early postnatal oral administration of L-serine at levels that replenish the serine pool in the brain rescued the observed biochemical and behavioral changes. Administration of L-serine till the second postnatal week also normalized brain weight in Slc1a4-E256 K mice. Our observations suggest that the transport of "non-essential" amino acids from the blood through the BBB is at least as important as that of essential amino acids for brain metabolism and development. We proposed that SLC1A4 mutations cause a BBB aminoacidopathy with deficits in serine import across the BBB required for optimal brain growth and leads to a metabolic microcephaly, which may be amenable to treatment with L-serine.

2.
Proc Natl Acad Sci U S A ; 120(42): e2302780120, 2023 10 17.
Article in English | MEDLINE | ID: mdl-37812701

ABSTRACT

Brain L-serine is critical for neurodevelopment and is thought to be synthesized solely from glucose. In contrast, we found that the influx of L-serine across the blood-brain barrier (BBB) is essential for brain development. We identified the endothelial Slc38a5, previously thought to be a glutamine transporter, as an L-serine transporter expressed at the BBB in early postnatal life. Young Slc38a5 knockout (KO) mice exhibit developmental alterations and a decrease in brain L-serine and D-serine, without changes in serum or liver amino acids. Slc38a5-KO brains exhibit accumulation of neurotoxic deoxysphingolipids, synaptic and mitochondrial abnormalities, and decreased neurogenesis at the dentate gyrus. Slc38a5-KO pups exhibit motor impairments that are affected by the administration of L-serine at concentrations that replenish the serine pool in the brain. Our results highlight a critical role of Slc38a5 in supplying L-serine via the BBB for proper brain development.


Subject(s)
Blood-Brain Barrier , Brain , Mice , Animals , Blood-Brain Barrier/metabolism , Brain/metabolism , Biological Transport , Ion Transport , Serine/metabolism , Mice, Knockout
3.
bioRxiv ; 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37645918

ABSTRACT

Correct intestinal morphogenesis depends on the early embryonic process of gut rotation, an evolutionarily conserved program in which a straight gut tube elongates and forms into its first loops. However, the gut tube requires guidance to loop in a reproducible manner. The dorsal mesentery (DM) connects the gut tube to the body and directs the lengthening gut into stereotypical loops via left-right (LR) asymmetric cellular and extracellular behavior. The LR asymmetry of the DM also governs blood and lymphatic vessel formation for the digestive tract, which is essential for prenatal organ development and postnatal vital functions including nutrient absorption. Although the genetic LR asymmetry of the DM has been extensively studied, a divider between the left and right DM has yet to be identified. Setting up LR asymmetry for the entire body requires a Lefty1+ midline barrier to separate the two sides of the embryo-without it, embryos have lethal or congenital LR patterning defects. Individual organs including the brain, heart, and gut also have LR asymmetry, and while the consequences of left and right signals mixing are severe or even lethal, organ-specific mechanisms for separating these signals are not well understood. Here, we uncover a midline structure composed of a transient double basement membrane, which separates the left and right halves of the embryonic chick DM during the establishment of intestinal and vascular asymmetries. Unlike other basement membranes of the DM, the midline is resistant to disruption by intercalation of Netrin4 (Ntn4). We propose that this atypical midline forms the boundary between left and right sides and functions as a barrier necessary to establish and protect organ asymmetry.

4.
Dev Cell ; 58(11): 951-966.e5, 2023 06 05.
Article in English | MEDLINE | ID: mdl-37080204

ABSTRACT

Formation of epithelia through mesenchymal-epithelial transition (MET) is essential for embryonic development and for many physiological and pathological processes. This study investigates MET in vivo in the chick embryo lateral mesoderm, where a multilayered mesenchyme transforms into two parallel epithelial sheets that constitute the coelomic lining of the embryonic body cavity. Prior to MET initiation, mesenchymal cells exhibit non-polarized distribution of multiple polarity markers, albeit not aPKC. We identified an epithelializing wave that sweeps across the lateral mesoderm, the wavefront of which is characterized by the accumulation of basal fibronectin and a network of 3D rosettes composed of polarized, wedge-shaped cells surrounding a central focus of apical markers, now including aPKC. Initiation of the MET process is dependent on extracellular matrix-integrin signaling acting through focal adhesion kinase and talin, whereas progression through the rosette phase requires aPKC function. We present a stepwise model for MET, comprising polarization, 3D-rosette, and epithelialization stages.


Subject(s)
Embryonic Development , Mesoderm , Animals , Chick Embryo , Cell Differentiation , Morphogenesis/physiology , Epithelium
5.
Aging Cell ; 21(12): e13731, 2022 12.
Article in English | MEDLINE | ID: mdl-36307912

ABSTRACT

Parkinson's disease (PD) is characterized by degeneration of neurons, particularly dopaminergic neurons in the substantia nigra. PD brains show accumulation of α-synuclein in Lewy bodies and accumulation of dysfunctional mitochondria. However, the mechanisms leading to mitochondrial pathology in sporadic PD are poorly understood. PINK1 is a key for mitophagy activation and recycling of unfit mitochondria. The activation of mitophagy depends on the accumulation of uncleaved PINK1 at the outer mitochondrial membrane and activation of a cascade of protein ubiquitination at the surface of the organelle. We have now found that SIAH3, a member of the SIAH proteins but lacking ubiquitin-ligase activity, is increased in PD brains and cerebrospinal fluid and in neurons treated with α-synuclein preformed fibrils (α-SynPFF). We also observed that SIAH3 is aggregated together with PINK1 in the mitochondria of PD brains. SIAH3 directly interacts with PINK1, leading to their intra-mitochondrial aggregation in cells and neurons and triggering a cascade of toxicity with PINK1 inactivation along with mitochondrial depolarization and neuronal death. We also found that SIAH1 interacts with PINK1 and promotes ubiquitination and proteasomal degradation of PINK1. Similar to the dimerization of SIAH1/SIAH2, SIAH3 interacts with SIAH1, promoting its translocation to mitochondria and preventing its ubiquitin-ligase activity toward PINK1. Our results support the notion that the increase in SIAH3 and intra-mitochondrial aggregation of SIAH3-PINK1 may mediate α-synuclein pathology by promoting proteotoxicity and preventing the elimination of dysfunctional mitochondria. We consider it possible that PINK1 activity is decreased in sporadic PD, which impedes proper mitochondrial renewal in the disease.


Subject(s)
Parkinson Disease , alpha-Synuclein , Humans , alpha-Synuclein/metabolism , Parkinson Disease/metabolism , Protein Kinases/metabolism , Mitophagy , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitin
6.
Hum Mol Genet ; 28(23): 3982-3996, 2019 12 01.
Article in English | MEDLINE | ID: mdl-31626293

ABSTRACT

Mutations in LRRK2 cause autosomal dominant and sporadic Parkinson's disease, but the mechanisms involved in LRRK2 toxicity in PD are yet to be fully understood. We found that LRRK2 translocates to the nucleus by binding to seven in absentia homolog (SIAH-1), and in the nucleus it directly interacts with lamin A/C, independent of its kinase activity. LRRK2 knockdown caused nuclear lamina abnormalities and nuclear disruption. LRRK2 disease mutations mostly abolish the interaction with lamin A/C and, similar to LRRK2 knockdown, cause disorganization of lamin A/C and leakage of nuclear proteins. Dopaminergic neurons of LRRK2 G2019S transgenic and LRRK2 -/- mice display decreased circularity of the nuclear lamina and leakage of the nuclear protein 53BP1 to the cytosol. Dopaminergic nigral and cortical neurons of both LRRK2 G2019S and idiopathic PD patients exhibit abnormalities of the nuclear lamina. Our data indicate that LRRK2 plays an essential role in maintaining nuclear envelope integrity. Disruption of this function by disease mutations suggests a novel phosphorylation-independent loss-of-function mechanism that may synergize with other neurotoxic effects caused by LRRK2 mutations.


Subject(s)
Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Nuclear Envelope/metabolism , Parkinson Disease/genetics , Animals , Cells, Cultured , Dopaminergic Neurons/cytology , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/pathology , HEK293 Cells , Humans , Lamin Type A/metabolism , Loss of Function Mutation , Mice , Parkinson Disease/metabolism , Parkinson Disease/pathology , Phosphorylation , Rats , Tumor Suppressor p53-Binding Protein 1/metabolism
7.
Sci Rep ; 9(1): 4122, 2019 03 11.
Article in English | MEDLINE | ID: mdl-30858454

ABSTRACT

Diarrhoea is the second leading cause of death in children under the age of five. The bacterial species, Vibrio cholerae and enteropathogenic Escherichia coli (EPEC), are among the main pathogens that cause diarrhoeal diseases, which are associated with high mortality rates. These two pathogens have a common infection site-the small intestine. While it is known that both pathogens utilize quorum sensing (QS) to determine their population size, it is not yet clear whether potential bacterial competitors can also use this information. In this study, we examined the ability of EPEC to determine V. cholerae population sizes and to modulate its own virulence mechanisms accordingly. We found that EPEC virulence is enhanced in response to elevated concentrations of cholera autoinducer-1 (CAI-1), even though neither a CAI-1 synthase nor CAI-1 receptors have been reported in E. coli. This CAI-1 sensing and virulence upregulation response may facilitate the ability of EPEC to coordinate successful colonization of a host co-infected with V. cholerae. To the best of our knowledge, this is the first observed example of 'eavesdropping' between two bacterial pathogens that is based on interspecies sensing of a QS molecule.


Subject(s)
Enteropathogenic Escherichia coli/physiology , Ketones/metabolism , Quorum Sensing , Vibrio cholerae/metabolism , Enteropathogenic Escherichia coli/pathogenicity , Virulence
8.
Langmuir ; 34(21): 6261-6270, 2018 05 29.
Article in English | MEDLINE | ID: mdl-29726683

ABSTRACT

Bacterial pathogens inject virulence factors into host cells during bacterial infections using type III secretion systems. In enteropathogenic Escherichia coli, this system contains an external filament, formed by a self-oligomerizing protein called E. coli secreted protein A (EspA). The EspA filament penetrates the thick viscous mucus layer to facilitate the attachment of the bacteria to the gut-epithelium. To do that, the EspA filament requires noteworthy mechanical endurance considering the mechanical shear stresses found within the intestinal tract. To date, the mechanical properties of the EspA filament and the structural and biophysical knowledge of monomeric EspA are very limited, mostly due to the strong tendency of the protein to self-oligomerize. To overcome this limitation, we employed a single molecule force spectroscopy (SMFS) technique and studied the mechanical properties of EspA. Force extension dynamic of (I91)4-EspA-(I91)4 chimera revealed two structural unfolding events occurring at low forces during EspA unfolding, thus indicating no unique mechanical stability of the monomeric protein. SMFS examination of purified monomeric EspA protein, treated by a gradually refolding protocol, exhibited similar mechanical properties as the EspA protein within the (I91)4-EspA-(I91)4 chimera. Overall, our results suggest that the mechanical integrity of the EspA filament likely originates from the interactions between EspA monomers and not from the strength of an individual monomer.


Subject(s)
Escherichia coli Proteins/chemistry , Single Molecule Imaging , Type III Secretion Systems/chemistry , Escherichia coli , Type III Secretion Systems/metabolism
9.
mBio ; 8(1)2017 01 03.
Article in English | MEDLINE | ID: mdl-28049143

ABSTRACT

The type III secretion system (T3SS) is a multiprotein complex that plays a central role in the virulence of many Gram-negative bacterial pathogens. To ensure that effector proteins are efficiently translocated into the host cell, bacteria must be able to sense their contact with the host cell. In this study, we found that EscP, which was previously shown to function as the ruler protein of the enteropathogenic Escherichia coli T3SS, is also involved in the switch from the secretion of translocator proteins to the secretion of effector proteins. In addition, we demonstrated that EscP can interact with the gatekeeper protein SepL and that the EscP-SepL complex dissociates upon a calcium concentration drop. We suggest a model in which bacterial contact with the host cell is accompanied by a drop in the calcium concentration that causes SepL-EscP complex dissociation and triggers the secretion of effector proteins. IMPORTANCE: The emergence of multidrug-resistant bacterial strains, especially those of pathogenic bacteria, has serious medical and clinical implications. At the same time, the development and approval of new antibiotics have been limited for years. Recently, antivirulence drugs have received considerable attention as a novel antibiotic strategy that specifically targets bacterial virulence rather than growth, an approach that applies milder evolutionary pressure on the bacteria to develop resistance. A highly attractive target for the development of antivirulence compounds is the type III secretion system, a specialized secretory system possessed by many Gram-negative bacterial pathogens for injecting virulence factors (effectors) into host cells. In this study, we shed light on the molecular mechanism that allows bacteria to sense their contact with the host cell and to respond with the timed secretion of effector proteins. Understanding this critical step for bacterial virulence may provide a new therapeutic strategy.


Subject(s)
Calcium Signaling , Calcium/metabolism , Carrier Proteins/metabolism , Enteropathogenic Escherichia coli/physiology , Escherichia coli Proteins/metabolism , Gene Expression Regulation, Bacterial , Type III Secretion Systems/metabolism , Carrier Proteins/genetics , Enteropathogenic Escherichia coli/genetics , Enteropathogenic Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Gene Deletion , Gene Expression , Models, Biological , Protein Binding , Protein Interaction Mapping
10.
Sci Rep ; 5: 17655, 2015 Dec 03.
Article in English | MEDLINE | ID: mdl-26631972

ABSTRACT

The Sec13 protein functions in various intracellular compartments including the nuclear pore complex, COPII-coated vesicles, and inside the nucleus as a transcription regulator. Here we developed a mouse model that expresses low levels of Sec13 (Sec13(H/-)) to assess its functions in vivo, as Sec13 knockout is lethal. These Sec13 mutant mice did not present gross defects in anatomy and physiology. However, the reduced levels of Sec13 in vivo yielded specific immunological defects. In particular, these Sec13 mutant mice showed low levels of MHC I and II expressed by macrophages, low levels of INF-γ and IL-6 expressed by stimulated T cells, and low frequencies of splenic IFN-γ+CD8+ T cells. In contrast, the levels of soluble and membrane-bound TGF-ß as well as serum immunoglobulin production are high in these mice. Furthermore, frequencies of CD19+CD5-CD95+ and CD19+CD5-IL-4+ B cells were diminished in Sec13(H/-) mice. Upon stimulation or immunization, some of the defects observed in the naïve mutant mice were compensated. However, TGF-ß expression remained high suggesting that Sec13 is a negative modulator of TGF-ß expression and of its immunosuppressive functions on certain immune cells. In sum, Sec13 regulates specific expression of immune factors with key functions in inflammation.


Subject(s)
Carrier Proteins/genetics , Immunologic Factors/metabolism , Inflammation/genetics , Inflammation/immunology , Nuclear Proteins/genetics , Animals , CD8-Positive T-Lymphocytes/immunology , Carrier Proteins/immunology , Immunologic Factors/genetics , Inflammation/metabolism , Interferon-gamma/metabolism , Interleukin-6/metabolism , Macrophages/immunology , Mice, Mutant Strains , Mycobacterium tuberculosis/pathogenicity , Nuclear Proteins/immunology , T-Lymphocytes, Regulatory/immunology , Transforming Growth Factor beta/metabolism , Tuberculosis/genetics , Tuberculosis/immunology
11.
Methods Cell Biol ; 122: 41-58, 2014.
Article in English | MEDLINE | ID: mdl-24857724

ABSTRACT

High resolution three-dimensional surface images of nuclear pore complexes (NPCs) can be obtained by field emission scanning electron microscopy. We present a short retrospective view starting from the early roots of microscopy, through the discovery of the cell nucleus and the development of some modern techniques for sample preparation and imaging. Detailed protocols are presented for assembling anchored nuclei in a Xenopus cell-free reconstitution system and for the exposure of the nuclear surface in mammalian cell nuclei. Immunogold labeling of metazoan NPCs and a promising new technique for delicate coating with iridium are also discussed.


Subject(s)
Microscopy, Electron, Scanning/methods , Nuclear Pore/physiology , Oocytes/cytology , Animals , Cell-Free System , Fixatives , Imaging, Three-Dimensional , Iridium/chemistry , Staining and Labeling/methods , Tissue Fixation/methods , Xenopus laevis
12.
Methods Mol Biol ; 1120: 253-61, 2014.
Article in English | MEDLINE | ID: mdl-24470031

ABSTRACT

High-resolution scanning electron microscopy provides three-dimensional surface images of nuclear pore complexes (NPCs) embedded in the nuclear envelope. Here, we describe a method for exposing the nuclear surface in mammalian tissue culture cells for imaging by scanning electron microscopy. Hypotonic treatment is followed by low-speed centrifugation onto polylysine-coated silicon chips, without the use of detergents. This helps to preserve NPCs close to their native morphology, embedded in undamaged nuclear membranes. This method is particularly advantageous for combining high-resolution imaging of NPCs with mammalian genetic systems.


Subject(s)
Cell Nucleus/metabolism , Cell Nucleus/ultrastructure , Microscopy, Electron, Scanning/methods , Nuclear Pore/metabolism , ran GTP-Binding Protein/metabolism , Active Transport, Cell Nucleus , Animals , COS Cells , Chlorocebus aethiops , Hypotonic Solutions/pharmacology
13.
Structure ; 20(3): 407-13, 2012 Mar 07.
Article in English | MEDLINE | ID: mdl-22405000

ABSTRACT

Field emission scanning electron microscopy (FESEM) can provide high-resolution three-dimensional surface imaging of many biological structures, including nuclear envelopes and nuclear pore complexes (NPCs). For this purpose, it is important to preserve NPCs as close as possible to their native morphology, embedded in undamaged nuclear membranes. We present optimized methodologies for FESEM imaging in a cell-free reconstitution system and for the direct visualization of mammalian cell nuclei. The use of anchored chromatin templates in the cell-free system is particularly advantageous for imaging fragile intermediates inhibited at early stages of assembly. Our new method for exposing the surface of mammalian nuclei results in an unprecedented quality of NPC images, avoiding detergent-induced and physical damage. These new methodologies pave the way for the combined use of FESEM imaging with biochemical and genetic manipulation, in cell-free systems and in mammalian cells.


Subject(s)
Cell Nucleus/ultrastructure , Microscopy, Electron, Scanning/methods , Molecular Conformation , Nuclear Pore/ultrastructure , Animals , Chromatin/ultrastructure , Immunohistochemistry , Mammals
14.
Proc Natl Acad Sci U S A ; 109(6): 2037-42, 2012 Feb 07.
Article in English | MEDLINE | ID: mdl-22308387

ABSTRACT

Viruses infecting bacteria (phages) are thought to greatly impact microbial population dynamics as well as the genome diversity and evolution of their hosts. Here we report on the discovery of a novel lineage of tailed dsDNA phages belonging to the family Myoviridae and describe its first representative, S-TIM5, that infects the ubiquitous marine cyanobacterium, Synechococcus. The genome of this phage encodes an entirely unique set of structural proteins not found in any currently known phage, indicating that it uses lineage-specific genes for virion morphogenesis and represents a previously unknown lineage of myoviruses. Furthermore, among its distinctive collection of replication and DNA metabolism genes, it carries a mitochondrial-like DNA polymerase gene, providing strong evidence for the bacteriophage origin of the mitochondrial DNA polymerase. S-TIM5 also encodes an array of bacterial-like metabolism genes commonly found in phages infecting cyanobacteria including photosynthesis, carbon metabolism and phosphorus acquisition genes. This suggests a common gene pool and gene swapping of cyanophage-specific genes among different phage lineages despite distinct sets of structural and replication genes. All cytosines following purine nucleotides are methylated in the S-TIM5 genome, constituting a unique methylation pattern that likely protects the genome from nuclease degradation. This phage is abundant in the Red Sea and S-TIM5 gene homologs are widespread in the oceans. This unusual phage type is thus likely to be an important player in the oceans, impacting the population dynamics and evolution of their primary producing cyanobacterial hosts.


Subject(s)
Myoviridae/genetics , Phylogeny , Synechococcus/virology , Base Sequence , DNA-Directed DNA Polymerase/metabolism , Environment , Genome, Viral/genetics , Molecular Sequence Data , Myoviridae/enzymology , Myoviridae/isolation & purification , Myoviridae/ultrastructure , Nucleic Acids/metabolism , Oceans and Seas , Open Reading Frames/genetics
15.
J Cell Sci ; 124(Pt 22): 3822-34, 2011 Nov 15.
Article in English | MEDLINE | ID: mdl-22100917

ABSTRACT

Nuclear pore complexes (NPCs) are formed during two separate stages of the metazoan cell cycle. They are assembled into the re-forming nuclear envelope (NE) at the exit from mitosis and into an intact, expanding NE during interphase. Here, we show that a soluble internal fragment of the membrane nucleoporin POM121 has a dominant-negative effect on both modes of assembly in a cell-free reconstitution system. The soluble POM121 fragment binds chromatin at sites that are distinct from ELYS-Nup107-160 'seeding' sites and prevents membrane enclosure and NPC formation. Importin-ß negatively regulates chromatin binding by the POM121 fragment through a conserved NLS motif and is also shown to affect the recruitment of the endogenous membrane protein to chromatin in the full assembly system. When an intact NE is present before the addition of the dominant-negative fragment, NPCs are inserted into the NE but membrane expansion is inhibited. This results in densely packed NPCs with no intervening membrane patches, as visualized by scanning electron microscopy. We conclude that POM121 plays an important role in both modes of assembly and links nuclear membrane formation and expansion to nuclear pore biogenesis.


Subject(s)
Chromatin/metabolism , Nuclear Pore Complex Proteins/genetics , Nuclear Pore Complex Proteins/metabolism , Nuclear Pore/metabolism , Xenopus Proteins/genetics , Xenopus Proteins/metabolism , Xenopus/metabolism , Animals , Mutation , Nuclear Envelope/genetics , Nuclear Envelope/metabolism , Nuclear Pore/genetics , Protein Binding , Xenopus/genetics
16.
Nucleic Acids Res ; 39(5): 1919-32, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21071400

ABSTRACT

The prime mechanism by which p53 acts as a tumor suppressor is as a transcription factor regulating the expression of diverse downstream genes. The DNA-binding domain of p53 (p53DBD) interacts with defined DNA sites and is the main target for mutations in human primary tumors. Here, we show that the CWWG motif, found in the center of each consensus p53 half-site, is a key player in p53/DNA interactions. Gel-mobility-shift assays provide a unique opportunity to directly observe the various oligomeric complexes formed between p53DBD and its target sites. We demonstrate that p53DBD binds to p53 consensus sites containing CATG with relatively low cooperativity, as both dimers and tetramers, and with even lower cooperativity to such sites containing spacer sequences. p53DBD binds to sites containing CAAG and CTAG with measurable affinity only when imbedded in two contiguous p53 half-sites and only as tetramers (with very high cooperativity). There are three orders-of-magnitude difference in the cooperativity of interaction between sites differing in their non-contacted step, and further two orders-of-magnitude difference as a function of spacer sequences. By experimentally measuring the global structural properties of these sites, by cyclization kinetics of DNA minicircles, we correlate these differences with the torsional flexibility of the binding sites.


Subject(s)
DNA/chemistry , Tumor Suppressor Protein p53/chemistry , Amino Acid Motifs , Base Sequence , Binding Sites , Consensus Sequence , DNA/metabolism , Dimerization , Humans , Protein Binding , Protein Isoforms/metabolism , Protein Structure, Tertiary , Tumor Suppressor Protein p53/metabolism
17.
Mol Biol Cell ; 20(18): 4031-42, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19625448

ABSTRACT

The nuclear envelope of higher eukaryotic cells reforms at the exit from mitosis, in concert with the assembly of nuclear pore complexes (NPCs). The first step in postmitotic NPC assembly involves the "seeding" of chromatin with ELYS and the Nup107-160 complex. Subsequent steps in the assembly process are poorly understood and different mechanistic models have been proposed to explain the formation of the full supramolecular structure. Here, we show that the initial step of chromatin seeding is negatively regulated by importin beta. Direct imaging of the chromatin attachment sites reveals single sites situated predominantly on the highest substructures of chromatin surface and lacking any sign of annular structures or oligomerized pre-NPCs. Surprisingly, the inhibition by importin beta is only partially reversed by RanGTP. Importin beta forms a high-molecular-weight complex with both ELYS and the Nup107-160 complex in cytosol. We suggest that initiation sites for NPC assembly contain single copies of chromatin-bound ELYS/Nup107-160 and that the lateral oligomerization of these subunits depends on the recruitment of membrane components. We predict that additional regulators, besides importin beta and Ran, may be involved in coordinating the initial seeding of chromatin with subsequent steps in the NPC assembly pathway.


Subject(s)
Chromatin/metabolism , Nuclear Pore/metabolism , Xenopus/metabolism , beta Karyopherins/metabolism , Animals , Chromatin/ultrastructure , Chromatography, Affinity , Cytosol/metabolism , DNA-Binding Proteins/metabolism , Humans , Molecular Weight , Ovum/cytology , Ovum/metabolism , Ovum/ultrastructure , Protein Binding , Transcription Factors/metabolism , Xenopus Proteins/metabolism , ran GTP-Binding Protein/metabolism
18.
Mol Cell ; 22(6): 741-753, 2006 Jun 23.
Article in English | MEDLINE | ID: mdl-16793544

ABSTRACT

The tumor-suppressor protein p53 is among the most effective of the cell's natural defenses against cancer. In response to cellular stress, p53 binds as a tetramer to diverse DNA targets containing two decameric half-sites, thereby activating the expression of genes involved in cell-cycle arrest or apoptosis. Here we present high-resolution crystal structures of sequence-specific complexes between the core domain of human p53 and different DNA half-sites. In all structures, four p53 molecules self-assemble on two DNA half-sites to form a tetramer that is a dimer of dimers, stabilized by protein-protein and base-stacking interactions. The protein-DNA interface varies as a function of the specific base sequence in correlation with the measured binding affinities of the complexes. The new data establish a structural framework for understanding the mechanisms of specificity, affinity, and cooperativity of DNA binding by p53 and suggest a model for its regulation by regions outside the sequence-specific DNA binding domain.


Subject(s)
DNA/chemistry , Models, Molecular , Tumor Suppressor Protein p53/chemistry , Apoptosis , Binding Sites , Cell Cycle , Crystallography, X-Ray , DNA/metabolism , Gene Expression Regulation, Neoplastic , Neoplasms/metabolism , Protein Binding , Protein Structure, Quaternary , Protein Structure, Tertiary , Structure-Activity Relationship , Tumor Suppressor Protein p53/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...