Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
Front Neurol ; 15: 1359479, 2024.
Article in English | MEDLINE | ID: mdl-38426167

ABSTRACT

Introduction: CACNA1S related congenital myopathy is an emerging recently described entity. In this report we describe 2 sisters with mutations in the CACNA1S gene and the novel phenotype of congenital myopathy and infantile onset episodic weakness. Clinical description: Both sisters had neonatal onset hypotonia, muscle weakness, and delayed walking. Episodic weakness started in infancy and continued thereafter, provoked mostly by cold exposure. Muscle imaging revealed fat replacement of gluteus maximus muscles. Next generation sequencing found the missense p.Cys944Tyr variant and the novel splicing variant c.3526-2A>G in CACNA1S. Minigene assay revealed the splicing variant caused skipping of exon 28 from the transcript, potentially affecting protein folding and/or voltage dependent activation. Conclusion: This novel phenotype supports the notion that there are age related differences in the clinical expression of CACNA1S gene mutations. This expands our understanding of mutations located in regions of the CACNA1S outside the highly conserved S4 segment, where most mutations thus far have been identified.

2.
Noncoding RNA Res ; 9(2): 350-358, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38511065

ABSTRACT

Background: Schizophrenia (SZ), a complex and chronic neuropsychiatric disorder affecting approximately 1 % of the general population, presents diagnostic challenges due to the absence of reliable biomarkers, and relying mainly on clinical observations. MicroRNAs (miRNAs) signatures in a wide range of diseases, including psychiatric disorders, hold immense potential for serving as biomarkers. This study aimed to analyze the expression levels of specific microRNAs (miRNAs) namely miR-29b-3p, miR-106b-5p, and miR-199a-3p and explore their diagnostic potential for SZ in Jordanian patients. Methods: Small RNAs (miRNAs) were extracted from plasma samples of 30 SZ patients and 35 healthy controls. RNA was reverse transcribed and quantified by real-time polymerase chain reaction (qRT-PCR). The expression levels of three miRNAs (miR-29b-3p, miR-106b-5p and miR-199a-3p) were analyzed. Receiver operating characteristic (ROC) curves analysis was performed to evaluate diagnostic value of these miRNAs. Target genes prediction, functional enrichment and pathway analyses were done using miRWalk and Metascape. STRING database was used to construct protein-protein network and identify hub genes. Results: Notably, miR-106b-5p and miR-199a-3p were significantly upregulated (p < 0.0001), while miRNA-29b-3p was downregulated (p < 0.0001) in SZ patients compared to controls. The diagnostic potential was assessed through ROC curves, revealing substantial diagnostic value for miR-199a-3p (AUC: 0.979) followed by miR-106b-5p (AUC: 0.774), with limited diagnostic efficacy for miR-29b-3p. Additionally, bioinformatic analyses for the predicted target genes of the diagnostically significant miRNAs uncovered Gene Ontology (GO) terms related to neurological development, including morphogenesis, which is involved in neuron differentiation, brain development, head development, and neuron projection morphogenesis. These findings highlight a potential connection between the identified miRNAs and SZ pathophysiology in the studied Jordanian population. Furthermore, a protein-protein interaction network from the target genes identified in association with neurological development in the Gene Ontology (GO) terms deepens our comprehension of the molecular landscape of the regulated target genes. Conclusions: This comprehensive exploration highlights the promising role of miRNAs in unraveling intricate molecular pathways associated with SZ in the Jordanian cohort and suggests that plasma miRNAs could serve as reliable biomarkers for SZ diagnosis and disease progression. Remarkably, this study represents the first investigation into the role of circulating miRNA expression among Jordanian patients with SZ, providing valuable insights into the diagnostic landscape of this disorder.

3.
EMBO Mol Med ; 15(2): e16478, 2023 02 08.
Article in English | MEDLINE | ID: mdl-36652330

ABSTRACT

Exome sequencing has introduced a paradigm shift for the identification of germline variations responsible for Mendelian diseases. However, non-coding regions, which make up 98% of the genome, cannot be captured. The lack of functional annotation for intronic and intergenic variants makes RNA-seq a powerful companion diagnostic. Here, we illustrate this point by identifying six patients with a recessive Osteogenesis Imperfecta (OI) and neonatal progeria syndrome. By integrating homozygosity mapping and RNA-seq, we delineated a deep intronic TAPT1 mutation (c.1237-52 G>A) that segregated with the disease. Using SI-NET-seq, we document that TAPT1's nascent transcription was not affected in patients' fibroblasts, indicating instead that this variant leads to an alteration of pre-mRNA processing. Predicted to serve as an alternative splicing branchpoint, this mutation enhances TAPT1 exon 12 skipping, creating a protein-null allele. Additionally, our study reveals dysregulation of pathways involved in collagen and extracellular matrix biology in disease-relevant cells. Overall, our work highlights the power of transcriptomic approaches in deciphering the repercussions of non-coding variants, as well as in illuminating the molecular mechanisms of human diseases.


Subject(s)
Exome Sequencing , Humans , Infant, Newborn , Base Sequence , Exons , Mutation , RNA, Messenger/genetics
4.
Res Int Bus Finance ; 64: 101824, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36474632

ABSTRACT

The paper examines the dynamic spillover among traditional currencies and cryptocurrencies before and during the COVID-19 pandemic and investigates whether economic policy uncertainty (EPU) impacts this spillover. Based on the TVP-VAR approach, we find evidence of spillover effects among currencies, which increased widely during the pandemic. In addition, results suggest that almost all cryptocurrencies remain as "safe-haven" tools against market uncertainty during the COVID-19 period. Moreover, comparative analysis shows that the total connectedness for cryptocurrencies is lower than for traditional currencies during the crisis. Further analysis using quantile regression suggests that EPU exerts an impact on the total and the net spillovers with different degrees across currencies and this impact is affected by the health crisis. Our findings have important policy implications for policymakers, investors, and international traders.

5.
Int Rev Financ Anal ; 83: 102309, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36536653

ABSTRACT

This paper examines the dynamic spillovers among the major cryptocurrencies under different market conditions and accounts for the ongoing COVID-19 health crisis. We also investigate whether cryptocurrency policy (CCPO) uncertainty and cryptocurrency price (CCPR) uncertainty affect the dynamic connectedness. We adopt the Quantile-VAR approach to capture the left and right tails of the distributions corresponding to return spillovers under different market conditions. Generally, cryptocurrencies show heterogeneous responses to the occurrence of the COVID-19 pandemic. We find that the total spillover index (TCI) varies across quantiles and rises widely during extreme market conditions, with a noticeable impact of the COVID-19 pandemic. Bitcoin lost its position as a dominant "hedger" during the health crisis, while Litecoin became the most dominant "hedger" and/or "safe-haven" asset before and during the pandemic period. Moreover, our analysis shows a significant impact of market uncertainties on total and net connectedness among the five cryptocurrencies. We argue that the COVID-19 pandemic crisis plays a vital role on the relationship between CCPO as well as CCPR and the dynamic connectedness across all market conditions.

6.
Nat Commun ; 13(1): 6054, 2022 10 13.
Article in English | MEDLINE | ID: mdl-36229431

ABSTRACT

Oral-facial-digital (OFD) syndromes are a heterogeneous group of congenital disorders characterized by malformations of the face and oral cavity, and digit anomalies. Mutations within 12 cilia-related genes have been identified that cause several types of OFD, suggesting that OFDs constitute a subgroup of developmental ciliopathies. Through homozygosity mapping and exome sequencing of two families with variable OFD type 2, we identified distinct germline variants in INTS13, a subunit of the Integrator complex. This multiprotein complex associates with RNA Polymerase II and cleaves nascent RNA to modulate gene expression. We determined that INTS13 utilizes its C-terminus to bind the Integrator cleavage module, which is disrupted by the identified germline variants p.S652L and p.K668Nfs*9. Depletion of INTS13 disrupts ciliogenesis in human cultured cells and causes dysregulation of a broad collection of ciliary genes. Accordingly, its knockdown in Xenopus embryos leads to motile cilia anomalies. Altogether, we show that mutations in INTS13 cause an autosomal recessive ciliopathy, which reveals key interactions between components of the Integrator complex.


Subject(s)
Carrier Proteins/genetics , Cell Cycle Proteins/genetics , Ciliopathies , Orofaciodigital Syndromes , Cilia/genetics , Ciliopathies/genetics , Homozygote , Humans , Mutation , Orofaciodigital Syndromes/genetics , RNA , RNA Polymerase II/genetics
7.
Diagnostics (Basel) ; 12(10)2022 Sep 30.
Article in English | MEDLINE | ID: mdl-36292064

ABSTRACT

Background: A long list of syndromic entities can be diagnosed immediately through scrutinizing the clinical phenotype of the craniofacial features. The latter should be assisted via proper radiological interpretations. Patients and Methods: Different children aged from 1 month to 12 years were referred to our departments seeking orthopedic advice. Primarily, all received variable false diagnoses in other institutes. Two unrelated boys of one month and 12 months were falsely diagnosed as having positional plagiocephaly associated with contractures of idiopathic origin. Two unrelated boys of 14 months and 2 years were diagnosed with pseudo-hydrocephalus and non-specific syndrome, and were referred to explore their skeletal development. Two unrelated girls of 4 years old and 12 years old presented with multiple contractures were referred because of progressive scoliosis. A 4-year-old girl was referred with a false provisional diagnosis of facial diplegia. All children underwent detailed clinical, radiological and tomographic phenotypic characterizations and genetic testing, respectively. Results: Idaho syndrome (craniosynostosis associated with multiple dislocations) was the final diagnosis in the two unrelated boys with plagiocephaly and multiple contractures. Two children falsely diagnosed with pseudo-hydrocephalus and non-specific syndrome, were diagnosed with Silver-Russell syndrome (RSS). Contractural arachnodactyly Beals (CAB) was confirmed as the definitive diagnosis in the two unrelated girls with progressive scoliosis and multiple contractures. Parry-Romberg syndrome (PRS) associated with congenital lumbar kyphosis was the final diagnosis of the girl with the diagnosis of facial diplegia. Hypomethylation of ICR1 was confirmed in the RSS patients. Whole exome sequencing (WES) revealed a heterozygous mutation in the PRS patients. WES and array-CGH showed that no relevant variants or copy number variations (CNV) were identified in the CAB patients. Conclusions: On the one hand, newborn children can manifest diverse forms of abnormal craniofacial features, which are usually associated with either major or minor dysmorphic stigmata. A cleft lip/ palate is a major craniofacial malformation, and frontal bossing or a disproportionate craniofacial contour can be falsely considered as a transient plagiocephaly, which is spontaneously resolved by time. On the other hand, many physicians fall into the problem of deeming a countless number of diseases, such as contractures, as an idiopathic or non-specific syndrome. The latter stems from limited clinical experience. Therefore, failing to establish between the onset of the deformity and other inexplicit abnormal features that the patient or their immediate families or relatives carry is the final outcome. In this study, we used, for the first time, a reconstruction CT scan to further delineate the congenital disruption of the craniofacial anatomy and the other skeletal malformation complex.

8.
Diagnostics (Basel) ; 12(7)2022 Jul 09.
Article in English | MEDLINE | ID: mdl-35885576

ABSTRACT

PURPOSE: Torticollis is not of uncommon occurrence in orthopaedic departments. Various theories and studies concerning the pathogenesis of the deformity have been suggested. We aimed to highlight and discuss the underlying cervical and spine malformation complex in correlation with torticollis via radiographic and tomographic analysis and its connection with a specific syndromic entity. METHODS: Torticollis has been recognised in six patients (2 boys and 4 girls with an age range of 14-18 years), in addition to a couple of parents manifested persistent backpain. A variable spine malformation complex was the main reason behind torticollis. In addition, some patients manifested plagiocephaly, facial asymmetry and scoliosis/kyphoscoliosis. In some patients, conventional radiographs were of limited value because of the overlapping anatomical structures. Three-dimensional reconstruction CT scanning was the modality of choice, which enlightens the path for the phenotypic characterisation. RESULTS: A 16-year-old-boy presented with torticollis in correlation with pathologic aberration of the spine cartilaginous stage was analysed via 3DCT scan. Comprehensive clinical and radiological phenotypes were in favour of spondylomegepiphyseal dysplasia. The genotype showed a mutation of the NKX3-2 (BAPX1) gene compatible with the diagnosis of spondylo-meg-epiphyseal-metaphyseal dysplasia. His younger male sibling and parents were heterozygous carriers. In two patients with pseudoachondroplasia syndrome, in which odontoid hypoplasia associated with cervical spine synchondrosis causing life-threatening torticollis, Cartilage oligomeric matrix protein (COMP) gene mutation was identified. MURCS syndrome has been diagnosed in two unrelated girls. Torticollis associated with cervical kyphosis was the major presentation since early childhood. Interestingly, one girl showed omovertebral bones of the lower cervical and upper thoracic spine. Her karyotype manifested a balanced translocation of 46 XX, t (14q; 15q). CONCLUSION: To detect the underlying etiological diagnosis of torticollis, a skeletal survey was the primary diagnostic tool. Conventional radiographs of the craniocervical junction and spine resulted in confusing readings because of the overlapping anatomical structures. Cranio-cervical malformation complex could have serious neurological deficits, especially for children with indefinite diagnosis of torticollis. The widely used term of congenital muscular torticollis resulted in morbid or mortal consequences. Moreover, some patients received vigorous physical therapy on the bases of muscular torticollis. Sadly speaking, this resulted in grave complications. Understanding the imaging phenotype and the genotype in such patients is the baseline tool for precise and proper management. The value of this paper is to sensitise physicians and orthopaedic surgeons to the necessity of comprehensive clinical and radiological phenotypic characterisations in patients with long term skeletal pathology.

11.
Afr J Paediatr Surg ; 18(4): 224-230, 2021.
Article in English | MEDLINE | ID: mdl-34341308

ABSTRACT

BACKGROUND: Infantile systemic hyalinosis (ISH) is an autosomal recessively inherited disorder. The classical natural history of the disease is characterised by hypotonia, multiple contractures, skin lesions, osteopenia, joint pain, bone fractures, persistent diarrhoea and growth deficiency. MATERIALS AND METHODS: Two children manifested the severe type of ISH underwent genotypic confirmation. In order to identify which other family members have inherited the disease. We included siblings and cousins in this study. The baseline tool to study other family subjects was based on the phenotypic characterisations of each child. RESULTS: . Two children with the severe type of ISH showed craniosynostosis (brachycephaly and scaphocephaly) associated with multiple contractures, progressive joint osteolysis ending up with multiple joint dislocations. The full exome sequencing was carried out, revealing a previously reported heterozygous nonsense mutation с.1294С>Т and a novel heterozygous non-synonymous substitution c. 58T>A in ANTRX2 gene. Three children (sibling and cousins) manifested variable clinical manifestations relevant to ISH. Specifically, asymptoamtic skin and skeletal abnormalities of hypoplastic clavicles and 'shepherd's crook' deformity and coxa vara. CONCLUSION: It is mandatory to perform extensive family pedigree search to detect asymptomatic clinical features in siblings and cousins in families with first degree related marriages. Interestingly, in the mild and the moderate types of ISH, we observed undescribed combination of asymptomatic skin and skeletal abnormalities. This is a comparative study between the severe and the mild/moderate types in a group of children from consanguineous families. Our current study extends the phenotypic characterisations of ISH.


Subject(s)
Hyaline Fibromatosis Syndrome , Child , Humans , Receptors, Peptide
12.
Calcif Tissue Int ; 109(5): 586-595, 2021 11.
Article in English | MEDLINE | ID: mdl-34003338

ABSTRACT

Proteus syndrome is a rare genetic disorder, which is characterized by progressive, segmental, or patchy overgrowth of diverse tissues of all germ layers, including the skeleton. Here, we present a 9-year-old girl with a somatic-activating mutation (c.49G > A; p.Glu17Lys) in AKT1 gene in a mosaic status typical for Proteus syndrome. She presented with hemihypertrophy of the right lower limb and a "moccasin" lesion among others. A transiliac bone biopsy was analyzed for bone histology/histomorphometry as well as bone mineralization density distribution (BMDD) and osteocyte lacunae sections (OLS) characteristics based on quantitative backscattered electron imaging. Bone histomorphometry revealed highly increased mineralizing surface (Z-score + 2.3) and mineral apposition rate (Z-score + 19.3), no osteoclasts (Z-score - 2.1), and an increased amount of primary bone in the external cortex. BMDD abnormalities included a decreased mode calcium concentration in cancellous bone (Z-score - 1.7) and an increased percentage of highly mineralized cortical bone area (Z-score + 2.4) compared to reference. OLS characteristics showed several differences compared to reference data; among them, there were the highly increased OLS-porosity, OLS-area, and OLS-perimeter on the external cortex (Z-scores + 6.8, + 4.4 and 5.4, respectively). Our findings suggest that increased bone formation reduced matrix mineralization in cancellous bone while the enhanced amount of primary bone in the external cortex increased the portion of highly mineralized cortical bone and caused OLS-characteristics abnormalities. Our results indicate further that remodeling of primary bone might be disturbed or delayed in agreement with the decreased number of osteoclasts observed in this child with Proteus syndrome.


Subject(s)
Proteus Syndrome , Biopsy , Bone Density , Bone and Bones , Child , Female , Humans , Phenotype , Proteus Syndrome/genetics
13.
J Cosmet Dermatol ; 20(9): 2999-3006, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33522694

ABSTRACT

BACKGROUND: Skin aging is an inevitable phenomenon characterized by wrinkled skin and loss of elasticity. To date, several studies have been performed on skin aging to discover the underlying mechanisms and improve efficient preventive strategies and anti-aging therapeutics. AIMS: Here, we aimed to investigate the modifications of oxidative phosphorylation and glycolysis which are the critical determinants of aging in aged-phenotype skin. METHODS: Due to the complexity of the skin aging process, we performed bioenergetic measurements on aged-phenotype fibroblasts from an inherited cutis laxa syndrome which remarkably presents clinical features of normal aged skin. Bioenergetic analysis was performed on cutis laxa samples (n = 3) and healthy samples (n = 3) using Seahorse XFe24 Analyzer. We also compared the sensitivity of cultured aged-phenotype fibroblasts to normal cells in glucose withdrawal. RESULTS: Our results show a significant increase in oxidative phosphorylation parameters but not glycolysis in the patient fibroblast cells implying increased energy demand and preferential dependence on mitochondrial respiration in those cells. Interestingly, we found the patient cells demonstrate hypersensitivity to glucose starvation, supporting their enhanced energy consumption. CONCLUSIONS: In summary, our work suggested increased energy demand and higher oxidative phosphorylation in aged-phenotype cells which can be considered in anti-skin aging therapeutic design.


Subject(s)
Cutis Laxa , Skin Aging , Aged , Cutis Laxa/genetics , Energy Metabolism , Humans , Phenotype , Skin
14.
Reprod Sci ; 28(5): 1540-1555, 2021 05.
Article in English | MEDLINE | ID: mdl-33475980

ABSTRACT

Sperm mitochondrial dysfunction causes the generation of an insufficient amount of energy needed for sperm motility. This will affect sperm fertilization capacity, and thus, most asthenozoospermic men usually require assisted reproductive techniques. The etiology of asthenozoospermia remains largely unknown. The current study aimed to investigate the effect of mitochondrial genetic variants on sperm motility and intracytoplasmic sperm injection (ICSI) outcomes. A total of 150 couples from the ICSI cycle were enrolled in this study. One hundred five of the male partners were asthenozoospermic patients, and they were subdivided into three groups according to their percentage of sperm motility, while forty-five of the male partners were normozoospermic. Genetic variants were screened using direct Sanger's sequencing in four mitochondrial genes (nicotinamide adenine dinucleotide hydrogen (NADH) dehydrogenase 1 (ND1), NADH dehydrogenase 2 (ND2), NADH dehydrogenase 5 (ND5), and NADH dehydrogenase 6 (ND6)). We identified three significant variants: 13708G>A (rs28359178) in ND5, 4216T>C (rs1599988) in ND1, and a novel 12506T>A in ND5 with P values 0.006, 0.036, and 0.013, respectively. The medians of sperm motility, fertilization rate, embryo cleavage score, and embryo quality score were significantly different between men showing 4216T>C, 12506T>A, 13708G>A and wild type, Mann-Whitney P values for the differences in the medians were < 0.05 in all of them. The results from this study suggest that 13708G>A, 12506T>A, and 4216 T>C variants in sperm mitochondrial DNA negatively affect sperm motility and ICSI outcomes.


Subject(s)
DNA, Mitochondrial/genetics , Electron Transport Complex I/genetics , Mitochondrial Proteins/genetics , NADH Dehydrogenase/genetics , Sperm Injections, Intracytoplasmic , Sperm Motility/genetics , Humans , Male
15.
Development ; 147(21)2020 11 05.
Article in English | MEDLINE | ID: mdl-33033118

ABSTRACT

Mitchell-Riley syndrome (MRS) is caused by recessive mutations in the regulatory factor X6 gene (RFX6) and is characterised by pancreatic hypoplasia and neonatal diabetes. To determine why individuals with MRS specifically lack pancreatic endocrine cells, we micro-CT imaged a 12-week-old foetus homozygous for the nonsense mutation RFX6 c.1129C>T, which revealed loss of the pancreas body and tail. From this foetus, we derived iPSCs and show that differentiation of these cells in vitro proceeds normally until generation of pancreatic endoderm, which is significantly reduced. We additionally generated an RFX6HA reporter allele by gene targeting in wild-type H9 cells to precisely define RFX6 expression and in parallel performed in situ hybridisation for RFX6 in the dorsal pancreatic bud of a Carnegie stage 14 human embryo. Both in vitro and in vivo, we find that RFX6 specifically labels a subset of PDX1-expressing pancreatic endoderm. In summary, RFX6 is essential for efficient differentiation of pancreatic endoderm, and its absence in individuals with MRS specifically impairs formation of endocrine cells of the pancreas head and tail.


Subject(s)
Cell Differentiation , Diabetes Mellitus/genetics , Diabetes Mellitus/pathology , Endoderm/embryology , Gallbladder Diseases/genetics , Gallbladder Diseases/pathology , Induced Pluripotent Stem Cells/pathology , Intestinal Atresia/genetics , Intestinal Atresia/pathology , Mutation/genetics , Pancreas/embryology , Regulatory Factor X Transcription Factors/genetics , Alleles , Base Sequence , Cell Differentiation/genetics , Chromatin/metabolism , Consanguinity , Diabetes Mellitus/diagnostic imaging , Embryo, Mammalian/metabolism , Embryonic Development , Family , Female , Gallbladder Diseases/diagnostic imaging , Genome, Human , Humans , Induced Pluripotent Stem Cells/metabolism , Intestinal Atresia/diagnostic imaging , Male , Pedigree , Transcription, Genetic , Transcriptome/genetics , X-Ray Microtomography
16.
Minerva Pediatr ; 2020 Jun 12.
Article in English | MEDLINE | ID: mdl-32536119

ABSTRACT

BACKGROUND: Children born with multiple congenital contractures have been almost always given the diagnosis of arthrogryposis multiplex congenita. Arthrogryposis is a descriptive term, not a specific disease entity. A heterogeneous group of conditions associated with multiple congenital joint contractures (mostly syndromic) should be considered. METHODS: The records of seven children (four boys and three girls with aged 6months- 11 years) of different ethnic origins have been included in this study. The constellation of specific craniofacial dysmorphic features, spine malformation complex, and appendicular skeletal abnormalities in addition to camptodactyly, talipes equinovarus and rocker- bottom feet were a cluster of malformation complex encountered in our patients. Via comprehensive clinical and imaging study (3D reconstruction CT scan), definite diagnosis of Escobar syndrome has been approached. RESULTS: The clinical and imaging phenotype was the key factor towards etiological understanding, treatment and genotype confirmation. We identified compound heterozygous mutations (c.459dupA [p.Val154Serfs*24] and c.794T>G [p.Leu265Serfs*24] of the CHRNG gene in four patients. Bilateral flexion contractures of the knees have been treated by using Iliazarov external fixator. Simultaneous corrections of scoliosis have been achieved by applying either dual traditional growing rods or single growing rods. CONCLUSIONS: The clinical and radiological phenotypic characterizations are the fundamental tool in differentiating Escobar from other forms of multiple contractures. The aim of this study are three folds, firstly to demonstrate the importance of detecting the etiological understanding in children presented with multiple contractures, secondly to refute the general conception among the vast majority of pediatricians and orthopedic surgeons that arthrogryposis multiplex is a diagnostic entity. And thirdly, we were able to detect severe spine deformity via 3D reconstruction CT scan, namely unsegmented posterior spinal bar.

17.
Front Pediatr ; 8: 172, 2020.
Article in English | MEDLINE | ID: mdl-32373565

ABSTRACT

Background: Horizontal Gaze Palsy with Progressive Scoliosis (HGPPS) is a rare autosomal recessive congenital disorder characterized by the absence of conjugate horizontal eye movements, and progressive debilitating scoliosis during childhood and adolescence. HGPPS is associated with mutations of the ROBO3 gene. In this study, the objective is to identify pathogenic variants in a cohort of Tunisian patients with HGPPS and to further define ROBO3 genotype-phenotype correlations. Methods: Thirteen Tunisian patients from six unrelated consanguineous families all manifesting HGPPS were genetically investigated. We searched for the causative variants for HGPPS using classical Sanger and whole exome sequencing. Results: Four distinct homozygous mutations were identified in ROBO3 gene. Two of these were newly identified homozygous and non-synonymous mutations, causing effectively damage to the protein by in silico analysis. The other two mutations were previously reported in Tunisian patients with HGPPS. Mutations were validated by Sanger sequencing in parents and affected individuals. Conclusion: To the best of our knowledge, this is the largest ever reported cohort on families with HGPPS in whom ROBO3 mutations were identified. These molecular findings have expanded our knowledge of the ROBO3 mutational spectrum. The relevance of our current study is two-fold; first to assist proper management of the scoliosis and second to protect families at risk.

18.
J Investig Med High Impact Case Rep ; 8: 2324709620911771, 2020.
Article in English | MEDLINE | ID: mdl-32172608

ABSTRACT

We aimed to understand the etiology behind the abnormal craniofacial contour and other clinical presentations in a number of children with Robinow syndrome. Seven children with Robinow syndrome were enrolled in this study (autosomal recessive caused by homozygous mutations in the ROR2 gene on chromosome 9q22, and the autosomal dominant caused by heterozygous mutation in the WNT5A gene on chromosome 3p14). In the autosomal recessive (AR) group, the main clinical presentations were intellectual, disability, poor schooling achievement, episodes of headache/migraine, and poor fine motor coordinative skills, in addition to massive restrictions of the spine biomechanics causing effectively the development of kyposcoliosis and frequent bouts of respiratory infections. Three-dimensional reconstruction computed tomography scan revealed early closure of the metopic and the squamosal sutures of skull bones. Massive spinal malsegmentation and unsegmented spinal bar were noted in the AR group. In addition to severe mesomelia and camptodactyly, in the autosomal dominant (AD) group, no craniosynostosis but few Wormian bones and the spine showed limited malsegemetation, and no mesomelia or camptodactyly have been noted. We wish to stress that little information is available in the literature regarding the exact pathology of the cranial bones, axial, and appendicular malformations in correlation with the variable clinical presentations in patients with the 2 types of Robinow syndrome.


Subject(s)
Abnormalities, Multiple/genetics , Craniofacial Abnormalities/genetics , Dwarfism/genetics , Limb Deformities, Congenital/genetics , Receptor Tyrosine Kinase-like Orphan Receptors/genetics , Urogenital Abnormalities/genetics , Animals , Genotype , Humans , Imaging, Three-Dimensional , Mutation , Phenotype , Syndrome , Tomography, X-Ray
19.
Clin Neurol Neurosurg ; 189: 105636, 2020 02.
Article in English | MEDLINE | ID: mdl-31841741

ABSTRACT

OBJECTIVES: To present the clinical picture, the associated complications and the genetic findings of Jordanian patients diagnosed with Congenital insensitivity to pain with anhidrosis (CIPA). PATIENTS AND METHODS: This is a retrospective study including 7 patients diagnosed with CIPA presenting to Jordan University Hospital neurology clinic between 2001 and 2017. RESULTS: Among five families, seven patients were diagnose with CIPA and followed for a period ranging from one month to 6 years. The initial symptom observed in all patients was high fever in the first few days after birth, decreased sensation to pain and decreased sweating were later noted. Poor weight gain, microcephaly and global developmental delay were present in most cases. All patients had tongue ulcerations. Fingers/toes ulcerations were present in 6/7 (86.0 %), hip joint dislocation in 3/7 (43.0 %), chronic arthritis and joint swelling in 6/7 (86.0 %), corneal ulcers in 4/7 (57.1 %) and kidney amyloidosis in 1/7 (13.0 %) of all patients. Death occurred in 4/7 (57.1 %) patients. Consanguinity was present in all families. Mutation analysis revealed three variants in NTRK1 gene. The frameshift (c.1860_1861insT; p.Pro621fs) mutation was common in our series. One patient carried a novel missense mutation (c.2170 G > A; p.Gly724Ser). The third missense mutation (C2125 G > T; p.Val709Leu) was reported in a previous study in one patient. CONCLUSION: This cohort reveals a severe CIPA phenotype necessitating thorough multidisciplinary care and follow up.


Subject(s)
Arthritis/physiopathology , Corneal Ulcer/physiopathology , Developmental Disabilities/physiopathology , Hereditary Sensory and Autonomic Neuropathies/physiopathology , Hip Dislocation, Congenital/physiopathology , Microcephaly/physiopathology , Receptor, trkA/genetics , Skin Ulcer/physiopathology , Adolescent , Body-Weight Trajectory , Child , Child, Preschool , Female , Fingers , Frameshift Mutation , Hereditary Sensory and Autonomic Neuropathies/genetics , Humans , Infant , Infant, Newborn , Jordan , Male , Mutation , Mutation, Missense , Pedigree , Retrospective Studies , Toes , Tongue Diseases/physiopathology , Ulcer/physiopathology , Young Adult
20.
Clin Rheumatol ; 39(2): 553-560, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31628567

ABSTRACT

BACKGROUND: Axial and extra-axial deceleration in function and progressive joint pain with subsequent development of antalgic gait associated with swellings, and stiffness of the joints with loss of the physiological spine biomechanics were the natural history in this group of patients. Clinical and radiological phenotypes have been analysed carefully to further understand the aetiology behind. METHODS: Seven patients (three children around the age of 9-11 and one child of 17 years old). Three adults aging 25, 30, 33 and 40 years old were seen and examined. The paediatric group of patients were initially diagnosed with myopathy followed later by juvenile rheumatoid arthritis in other institutions. Clinical and imaging documentation were collected in our departments, followed by mutation screening, was carried out by bidirectional sequencing of the WISP3 gene. RESULTS: Clinical and radiological phenotypic studies confirmed the diagnosis of progressive pseudorheumatoid chondrodysplasia. A constellation of abnormalities such as early senile hyperostosis of the spine (Forestier disease), osteoarthritis of the hips showed progressive diminution and irregularities of the hip joint spaces associated with progressive capital femoral epiphyseal dysplasia and coxa vara have been encountered. Loss-of-function homozygous mutations (c.667T>G, p.Cys223Gly) and (c.170C>A, p.Ser57*) in the WISP3 gene were identified in our patients. CONCLUSION: The definite diagnosis was not defined via vigorous myopathic and rheumatologic investigations. Detailed clinical examination and skeletal survey, followed by genotypic confirmation, were our fundamental pointers to rule out the false diagnosis of juvenile rheumatoid arthritis and rheumatoid polyarthritis in the adult group of patients. We wish to stress that the clinical/radiological phenotype is the baseline tool to establish a definite diagnosis and to guide the geneticist toward proper genotype.Key Points•Joint pain and difficulties in walking/climbing the stairs are characteristic features encountered in early childhood. False diagnosis of juvenile rheumatoid arthritis can be made at this point.•False positive-like muscular wasting resembling myopathy results in ensuing vigorous troublesome investigations.•Flattened vertebral bodies associated with defective ossification of the anterior end plates are characteristic features of progressive pseudorheumatoid chondrodysplasia.•Joint expansions, which are usually accompanied by narrowing of the articular ends of the appendicular skeletal system, show a clear radiological phenotype of pseudorheumatoid chondrodysplasia.


Subject(s)
Bone Morphogenetic Proteins/metabolism , CCN Intercellular Signaling Proteins/genetics , Joint Diseases/congenital , Skeleton/diagnostic imaging , Wnt Signaling Pathway , Adolescent , Adult , Child , Humans , Joint Diseases/diagnostic imaging , Joint Diseases/genetics , Joint Diseases/metabolism , Phenotype , Radiography , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...