Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 2234, 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38472180

ABSTRACT

Coherent spin waves possess immense potential in wave-based information computation, storage, and transmission with high fidelity and ultra-low energy consumption. However, despite their seminal importance for magnonic devices, there is a paucity of both structural prototypes and theoretical frameworks that regulate the spin current transmission and magnon hybridization mediated by coherent spin waves. Here, we demonstrate reconfigurable coherent spin current transmission, as well as magnon-magnon coupling, in a hybrid ferrimagnetic heterostructure comprising epitaxial Gd3Fe5O12 and Y3Fe5O12 insulators. By adjusting the compensated moment in Gd3Fe5O12, magnon-magnon coupling was achieved and engineered with pronounced anticrossings between two Kittel modes, accompanied by divergent dissipative coupling approaching the magnetic compensation temperature of Gd3Fe5O12 (TM,GdIG), which were modeled by coherent spin pumping. Remarkably, we further identified, both experimentally and theoretically, a drastic variation in the coherent spin wave-mediated spin current across TM,GdIG, which manifested as a strong dependence on the relative alignment of magnetic moments. Our findings provide significant fundamental insight into the reconfiguration of coherent spin waves and offer a new route towards constructing artificial magnonic architectures.

2.
Nanoscale ; 16(14): 7068-7075, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38450557

ABSTRACT

Skyrmions, swirling spin textures with topologically protected stability and low critical driven-current density, can be generated from the stripe domain with current pulses, bringing them closer to practical applications in racetrack memory. However, the mechanism of this topological transition from the stripe domain to the skyrmion remains unclear because the transition process occurs at a nanosecond timescale, giving rise to difficulties in observing this process using imaging tools. In this study, we controlled the domain wall - skyrmion transition by combining Joule heating with spin-orbit torque (SOT) and experimentally observed the details of this process, by which we confirmed the mechanism: the spatial variation of the topological charge density induces half skyrmions branching from the stripe domains, and these half skyrmions overcome the surface tension and break away from the stripe domain, resulting in the generation of skyrmions. The details were observed by employing Joule heating to overcome the pinning effect and manipulating the strength of the SOT to induce the branching and breaking of half skyrmions. These findings offer new insights into skyrmion generation and serve as an important step towards the development of highly efficient devices for processing and computing based on skyrmionics.

3.
Phys Rev Lett ; 132(5): 056702, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38364119

ABSTRACT

We report a giant hysteretic spin Seebeck effect (SSE) anomaly with a sign reversal at magnetic fields much stronger than the coercive field in a (001)-oriented Tb_{3}Fe_{5}O_{12} film. The high-field SSE enhancement reaches 4200% at approximately 105 K over its weak-field value and presents a nonmonotonic dependence on temperature. The unexpected high-field hysteresis of SSE is found to be associated with a magnetic transition of double-umbrella spin texture in TbIG. Nearly parallel dispersion curves of magnons and acoustic phonons around this neoteric transition are supported by theoretical calculations, leading to a high density of field-tuned magnon polarons and consequently an extraordinarily large SSE. Our study provides insight into the evolution of magnon dispersions of double-umbrella TbIG and could potentially boost the efficiency of magnon-polarons SSE devices.

4.
Adv Mater ; 34(24): e2200019, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35365890

ABSTRACT

Recently, the interest in spin pumping (SP) has escalated from ferromagnets into antiferromagnetic systems, potentially enabling fundamental physics and magnonic applications. Compensated ferrimagnets are considered alternative platforms for bridging ferro- and antiferromagnets, but their SP and the associated magnetic damping have been largely overlooked so far despite their seminal importance for magnonics. Herein, an unconventional SP together with magnetic damping in an insulating compensated ferrimagnet Gd3 Fe5 O12 (GdIG) is reported. Remarkably, the divergence of the nonlocal effective magnetic damping induced by SP close to the compensation temperature in GdIG/Cu/Pt heterostructures is identified unambiguously. Furthermore, the coherent and incoherent spin currents, generated by SP and the spin Seebeck effect, respectively, undergo a distinct direction change with the variation of temperature. The physical mechanisms underlying these observations are self-consistently clarified by the ferrimagnetic counterpart of SP and the handedness-related spin-wave spectra. The findings broaden the conventional paradigm of the ferromagnetic SP model and open new opportunities for exploring the ferrimagnetic magnonic devices.

5.
Phys Rev Lett ; 127(11): 117204, 2021 Sep 10.
Article in English | MEDLINE | ID: mdl-34558947

ABSTRACT

Dzyaloshinskii-Moriya interaction in magnets, which is usually derived from inversion symmetry breaking at interfaces or in noncentrosymmetric crystals, plays a vital role in chiral spintronics. Here we report that an emergent Dzyaloshinskii-Moriya interaction can be achieved in a centrosymmetric material, La_{0.67}Sr_{0.33}MnO_{3}, by a graded strain. This strain-driven Dzyaloshinskii-Moriya interaction not only exhibits distinctive two coexisting nonreciprocities of spin-wave propagation in one system, but also brings about a robust room-temperature magnetic skyrmion lattice as well as a spiral lattice at zero magnetic field. Our results demonstrate the feasibility of investigating chiral spintronics in a large category of centrosymmetric magnetic materials.

6.
Nat Commun ; 12(1): 5453, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34526513

ABSTRACT

Strongly correlated oxides with a broken symmetry could exhibit various phase transitions, such as superconductivity, magnetism and ferroelectricity. Construction of superlattices using these materials is effective to design crystal symmetries at atomic scale for emergent orderings and phases. Here, antiferromagnetic Ruddlesden-Popper Sr2IrO4 and perovskite paraelectric (ferroelectric) SrTiO3 (BaTiO3) are selected to epitaxially fabricate superlattices for symmetry engineering. An emergent magnetoelectric phase transition is achieved in Sr2IrO4/SrTiO3 superlattices with artificially designed ferroelectricity, where an observable interfacial Dzyaloshinskii-Moriya interaction driven by non-equivalent interface is considered as the microscopic origin. By further increasing the polarization namely interfacial Dzyaloshinskii-Moriya interaction via replacing SrTiO3 with BaTiO3, the transition temperature can be enhanced from 46 K to 203 K, accompanying a pronounced magnetoelectric coefficient of ~495 mV/cm·Oe. This interfacial engineering of Dzyaloshinskii-Moriya interaction provides a strategy to design quantum phases and orderings in correlated electron systems.

7.
Onco Targets Ther ; 14: 905-916, 2021.
Article in English | MEDLINE | ID: mdl-33603395

ABSTRACT

BACKGROUND: Baicalein has a significant anti-cancerous function in the treatment of cervical cancer (CC). Its functional mechanism regarding circular RNA (circRNA) hippocampus abundant transcript 1 (circHIAT1) and microRNA-19a-3p (miR-19a-3p) was explored in this research. METHODS: CC cell viability and colony formation were determined using Cell Counting Kit-8 (CCK-8) and colony formation assay. Cell cycle progression and apoptosis were analyzed via flow cytometry. Protein markers of cell cycle, apoptosis and protein kinase B/mammalian target of rapamycin (AKT/mTOR) pathway were detected by Western blot. CircHIAT1 and miR-19a-3p levels were assayed through the quantitative real-time polymerase chain reaction (qRT-PCR). The interaction between circHIAT1 and miR-19a-3p was validated by dual-luciferase reporter and RNA pull-down assays. In vivo experiment was performed by xenograft model. RESULTS: CC cell growth and cell cycle progression were repressed while apoptosis was enhanced by baicalein. MiR-19a-3p was downregulated in baicalein-treated CC cells and miR-19a-3p overexpression lightened the baicalein-induced CC progression inhibition. Moreover, circHIAT1 was found to be a sponge of miR-19a-3p in CC cells. Baicalein-induced cell growth inhibition, cell cycle arrest and apoptosis promotion were neutralized by knockdown of circHIAT1 via targeting miR-19a-3p. Baicalein acted on the circHIAT1/miR-19a-3p to inactivate AKT/mTOR pathway. Baicalein also reduced CC tumor growth in vivo via regulating the levels of circHIAT1 and miR-19a-3p. CONCLUSION: These findings demonstrated that the inhibitory function of baicalein in CC progression was dependent on the repression of AKT/mTOR pathway by upregulating circHIAT1 to sponge miR-19a-3p, showing a specific mechanism for baicalein in CC.

8.
Onco Targets Ther ; 13: 9377-9388, 2020.
Article in English | MEDLINE | ID: mdl-33061425

ABSTRACT

BACKGROUND: Paclitaxel is an effective chemotherapeutic agent for the treatment of cancer patients. Accumulating evidence suggests that circular RNAs (circRNAs) play critical roles in the occurrence and development of human cancers. However, there are few studies on interactions between paclitaxel and circRNAs in hepatocellular carcinoma (HCC). MATERIALS AND METHODS: Cell counting kit-8 (CCK-8) assay and colony formation assay were conducted to determine cell proliferation. Cell apoptosis was assessed by flow cytometry. The expression levels of circRNA baculoviral IAP repeat-containing 6 (circ-BIRC6), microRNA-877-5p (miR-877-5p), and tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein, zeta (YWHAZ) were detected by quantitative real-time polymerase chain reaction (qRT-PCR). The mice xenograft model was established to investigate the roles of circ-BIRC6 and paclitaxel in vivo. The interaction between miR-877-5p and circ-BIRC6 or YWHAZ was predicted by bioinformatics analysis and verified by dual-luciferase reporter assay. Western blot assay was applied for measuring the protein expression of YWHAZ. RESULTS: Paclitaxel suppressed HCC tumorigenesis through decreasing cell proliferation and accelerating apoptosis. Circ-BIRC6 and YWHAZ were upregulated, and miR-877-5p was downregulated in HCC tissues and cells. Paclitaxel treatment inhibited the expression of circ-BIRC6 and YWHAZ while promoted the expression of miR-877-5p. Circ-BIRC6 overexpression or miR-877-5p interference reversed the inhibitory effect of paclitaxel on HCC tumorigenesis. Moreover, miR-877-5p could specially bind to YWHAZ, and its knockdown abated the suppressive effect of circ-BIRC6 depletion on HCC tumorigenesis. Additionally, YWHAZ was identified as a direct target of miR-877-5p. Besides, circ-BIRC6 functioned as a molecular sponge of miR-877-5p to regulate YWHAZ expression. CONCLUSION: Paclitaxel limited HCC tumorigenesis via modulating circ-BIRC6/miR-877-5p/YWHAZ axis, providing a novel therapeutic approach for the treatment of HCC.

9.
Adv Mater ; 32(31): e2002607, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32596934

ABSTRACT

Due to its inherent superior perpendicular magnetocrystalline anisotropy, the FePt in L10 phase enables magnetic storage and memory devices with ultrahigh capacity. However, reversing the FePt magnetic state, and therefore encoding information, has proven to be extremely difficult. Here, it is demonstrated that an electric current can exert a large spin torque on an L10 FePt magnet, ultimately leading to reversible magnetization switching. The spin torque monotonically increases with increasing FePt thickness, exhibiting a bulk characteristic. Meanwhile, the spin torque effective fields and switching efficiency increase as the FePt approaches higher chemical ordering with stronger spin-orbit coupling. The symmetry breaking that generates spin torque within L10 FePt is shown to arise from an inherent structural gradient along the film normal direction. By artificially reversing the structural gradient, an opposite spin torque effect in L10 FePt is demonstrated. At last, the role of the disorder gradient in generating a substantial torque in a single ferromagnet is supported by theoretical calculations. These results will push forward the frontier of material systems for generating spin torques and will have a transformative impact on magnetic storage and spin memory devices with simple architecture, ultrahigh density, and readily application.

10.
Phys Rev Lett ; 124(7): 077201, 2020 Feb 21.
Article in English | MEDLINE | ID: mdl-32142313

ABSTRACT

In the absence of external magnetic field and Dzyaloshinskii-Moriya interaction, the magnon excitations in a uniaxial antiferromagnet insulator are usually described by two degenerate magnon modes with the same dispersion but opposite polarizations. In this Letter, we show that these two modes are actually coupled intrinsically through an effective spin-orbit coupling due to the dipolar interaction. The magnon spin dynamics and transport thus display various electronlike spin-orbit phenomena, such as the D'yakonov-Perel'-type spin relaxation and an intrinsic (inverse) spin Hall effect. Our work may potentially broaden the applications of antiferromagnetic insulators in spintronic devices.

11.
Nat Commun ; 8: 15859, 2017 06 12.
Article in English | MEDLINE | ID: mdl-28604690

ABSTRACT

To know the properties of a particle or a wave, one should measure how its energy changes with its momentum. The relation between them is called the dispersion relation, which encodes essential information of the kinetics. In a magnet, the wave motion of atomic spins serves as an elementary excitation, called a spin wave, and behaves like a fictitious particle. Although the dispersion relation of spin waves governs many of the magnetic properties, observation of their entire dispersion is one of the challenges today. Spin waves whose dispersion is dominated by magnetostatic interaction are called pure-magnetostatic waves, which are still missing despite of their practical importance. Here, we report observation of the band dispersion relation of pure-magnetostatic waves by developing a table-top all-optical spectroscopy named spin-wave tomography. The result unmasks characteristics of pure-magnetostatic waves. We also demonstrate time-resolved measurements, which reveal coherent energy transfer between spin waves and lattice vibrations.

12.
Phys Rev Lett ; 117(20): 207203, 2016 Nov 11.
Article in English | MEDLINE | ID: mdl-27886475

ABSTRACT

Sharp structures in the magnetic field-dependent spin Seebeck effect (SSE) voltages of Pt/Y_{3}Fe_{5}O_{12} at low temperatures are attributed to the magnon-phonon interaction. Experimental results are well reproduced by a Boltzmann theory that includes magnetoelastic coupling. The SSE anomalies coincide with magnetic fields tuned to the threshold of magnon-polaron formation. The effect gives insight into the relative quality of the lattice and magnetization dynamics.

13.
Phys Rev Lett ; 115(19): 197201, 2015 Nov 06.
Article in English | MEDLINE | ID: mdl-26588408

ABSTRACT

We present a theory for the coherent magnetization dynamics induced by a focused ultrafast laser beam in magnetic films, taking into account nonthermal (inverse Faraday effect) and thermal (heating) actuation. The dynamic conversion between spin waves and phonons is induced by the magnetoelastic coupling that allows efficient propagation of angular momentum. The anisotropy of the magnetoelastic coupling renders characteristic angle dependences of the magnetization propagation that are strikingly different for thermal and nonthermal actuation.

14.
Phys Rev Lett ; 112(9): 096601, 2014 Mar 07.
Article in English | MEDLINE | ID: mdl-24655266

ABSTRACT

We provide a precise microscopic definition of the recently observed inverse Edelstein effect in which a nonequilibrium spin accumulation in the plane of a two-dimensional (interfacial) electron gas drives an electric current perpendicular to its own direction. The drift-diffusion equations that govern the effect are presented and applied to the interpretation of the experiments.

15.
Pain Physician ; 16(5): E563-75, 2013.
Article in English | MEDLINE | ID: mdl-24077207

ABSTRACT

BACKGROUND: Clinical studies have shown that about two-thirds of patients with chronic pain suffer from short-term memory (STM) deficits and an effective drug for treatment of the neurological disorder is lacking at present. OBJECTIVE: We tested whether chronic oral application of magnesium L-threonate (MgT), which has been shown to improve memory in normal and aging animals by elevating Mg2+ in the brain, could prevent or restore the STM deficits induced by spared nerve injury (SNI), an animal model of chronic neuropathic pain. The mechanisms underlying the effect of MgT on STM deficits were also investigated. STUDY DESIGN: The experiments were conducted in a random and double-blind fashion in adult male rats. MgT was administrated via drinking water at a dose of 609 mg/kg/d for 2 weeks, starting either one week before SNI (preventative group) or one week after SNI (therapeutic group), and water without the drug served as control. METHODS: STM was accessed with a novel object recognition test (NORT), followed by recording of long-term potentiation (LTP) in the hippocampus in vivo and the measurement of the expression of tumor necrosis factor-α (TNF-α) with Western Blot or Immunohistochemistrical staining, a-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) and N-methyl-D-aspartic acid (NMDA) receptor (NMDAR) currents were recorded with patch clamp in CA1 neurons in acute and cultured hippocampal slices. RESULT: We found that chronic oral application of MgT was able to prevent and restore the deficits of STM and of LTP at CA3-CA1 synapses in the hippocampus induced by SNI. Furthermore, both preventative and therapeutic chronic oral application of MgT blocked the up-regulation of TNF-α in the hippocampus, which has been previously shown to be critical for memory deficits. SNI reduced NMDAR current and the effect was dramatically attenuated by elevating extracellular Mg2+ concentration ([Mg2+]○). In cultured hippocampal slices, chronic application of recombinant rat TNF-α (rrTNF-α) for 3 days reduced NMDAR current in a concentration-dependent manner and the effect was again blocked by elevating [Mg2+]○. LIMITATIONS: We showed that oral application of MgT inhibited the over-expression of TNF-α and rescued the dysfunction of the NMDAR, but the causal relationship between them remains elusive. CONCLUSIONS: Our data suggested that oral application of MgT was able to prevent and restore the STM deficits in an animal model of chronic neuropathic pain by reversing the dysfunction of the NMDAR, and normalization of TNF-α expression may play a role in the effect. Oral application of MgT may be a simple and potent means for handling this form of memory deficit.


Subject(s)
Butyrates/pharmacology , Long-Term Potentiation/drug effects , Memory Disorders/drug therapy , Neuralgia/drug therapy , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Animals , Disease Models, Animal , Double-Blind Method , Male , Memory Disorders/prevention & control , Neuralgia/metabolism , Neurons/drug effects , Neurons/metabolism , Rats , Rats, Sprague-Dawley
16.
Phys Rev Lett ; 111(13): 136602, 2013 Sep 27.
Article in English | MEDLINE | ID: mdl-24116799

ABSTRACT

We show that an electric field parallel to the wave fronts of an electron-hole grating in a GaAs quantum well generates, via the electronic spin Hall effect, a spin grating of the same wave vector and with an amplitude that can exceed 1% of the amplitude of the initial density grating. We refer to this phenomenon as the "collective spin Hall effect." A detailed study of the coupled spin-charge dynamics for quantum wells grown in different directions reveals rich features in the time evolution of the induced spin density, including the possibility of generating a helical spin grating.

17.
Phys Rev Lett ; 110(9): 096601, 2013 Mar 01.
Article in English | MEDLINE | ID: mdl-23496734

ABSTRACT

Phase-resolved transient grating spectroscopy in semiconductor quantum wells has been shown to be a powerful technique for measuring the electron-hole drag resistivity ρ(eh), which depends on the Coulomb interaction between the carriers. In this Letter we develop the interacting drift-diffusion theory, from which ρ(eh) can be determined, given the measured mobility of an electron-hole grating. From this theory we predict a crossover from a high-excitation-density regime, in which the mobility has the "normal" positive value, to a low-density regime, in which Coulomb drag dominates and the mobility becomes negative. At the crossover point, the mobility of the grating vanishes.

SELECTION OF CITATIONS
SEARCH DETAIL
...