Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.839
Filter
1.
Article in English | MEDLINE | ID: mdl-38954188

ABSTRACT

BACKGROUND: Bexarotene, also recognized as Targretin, is categorized as a retinoid, a type of cancer drug. Nevertheless, the precise mechanisms of bexarotene in relation to colon cancer remain unclear. In colon cancer, SEZ6L2 was suggested as one of the biomarkers and targets. This study presents a comprehensive exploration of the role of SEZ6L2 in colon cancer. METHODS: We utilized both TCGA data and a cohort of Chinese patients. In a meticulous analysis of 478 colon cancer cases, SEZ6L2 expression levels were examined in relation to clinical characteristics, staging parameters, and treatment outcomes. Additionally, we investigated the pharmacological impact of bexarotene on SEZ6L2, demonstrating a significant downregulation of SEZ6L2 at both mRNA and protein levels in colon cancer patients following bexarotene treatment. RESULTS: SEZ6L2 consistently overexpresses in colon cancer, serving as a potential universal biomarker with prognostic significance, validated in a diverse Chinese cohort. In vitro, SEZ6L2 promotes cell viability without affecting migration. Bexarotene treatment inhibits SEZ6L2 expression, correlating with reduced viability both in vitro and in vivo. SEZ6L2 overexpression accelerates declining survival rates in an in vivo context. Bexarotene's efficacy is context-dependent, effective in parental cells but not with SEZ6L2 overexpression. Computational predictions suggest a direct SEZ6L2-bexarotene interaction, warranting further experimental exploration. CONCLUSION: The study provides valuable insights into SEZ6L2 as a prognostic biomarker in colon cancer, revealing its intricate relationship with clinical parameters, treatment outcomes, and bexarotene effects. Context-dependent therapeutic responses emphasize the nuanced understanding required for SEZ6L2's role in colon cancer, paving the way for targeted therapeutic strategies.

2.
Article in English | MEDLINE | ID: mdl-38956932

ABSTRACT

Artificial photosynthesis is an effective way of converting CO2 into fuel and high value-added chemicals. However, the sluggish interfacial electron transfer and adsorption of CO2 at the catalyst surface strongly hamper the activity and selectivity of CO2 reduction. Here, we report a photocathode attaching zeolitic imidazolate framework-8 (ZIF-8) onto a ZnTe surface to mimic an aquatic leaf featuring stoma and chlorophyll for efficient photoelectrochemical conversion of CO2 into CO. ZIF-8 possessing high CO2 adsorption capacity and diffusivity has been selected to enrich CO2 into nanocages and provide a large number of catalytic active sites. ZnTe with high light-absorption capacity serves as a light-absorbing layer. CO2 molecules are collected in large nanocages of ZIF-8 and delivered to the ZnTe surface. As evidenced by scanning electrochemical microscopy, the interface can effectively boost interfacial electron transfer kinetics. The ZIF-8/ZnTe photocathode with unsaturated Zn-Nx sites exhibits a high Faradaic efficiency for CO production of 92.9% and a large photocurrent of 6.67 mA·cm-2 at -2.48 V (vs Fc/Fc+) in a nonaqueous electrolyte at AM 1.5G solar irradiation (100 mW·cm-2).

3.
Health Econ Rev ; 14(1): 48, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38967718

ABSTRACT

Since 2017, immune checkpoint inhibitors (ICIs) have been available for the treatment of advanced hepatocellular carcinoma (HCC) or unresectable HCC, but their adoption into national medical insurance programs is still limited. Cost-effectiveness evidence can help to inform treatment decisions. This systematic review aimed to provide a critical summary of economic evaluations of ICIs as a treatment for advanced HCC and identify key drivers (PROSPERO 2023: CRD42023417391). The databases used included Scopus, Web of Science, PubMed, Embase, and Cochrane Central. Economic evaluations of ICIs for the treatment of advanced HCC were included. Studies were screened by two people. Of the 898 records identified, 17 articles were included. The current evidence showed that ICIs, including atezolizumab plus bevacizumab, sintilimab plus bevacizumab/bevacizumab biosimilar, nivolumab, camrelizumab plus rivoceranib, pembrolizumab plus lenvatinib, tislelizumab, durvalumab, and cabozantinib plus atezolizumab, are probably not cost-effective in comparison with tyrosine kinase inhibitors or other ICIs. The most influential parameters were price of anticancer drugs, hazard ratios for progression-free survival and overall survival, and utility for health statest. Our review demonstrated that ICIs were not a cost-effective intervention in advanced HCC. Although ICIs can significantly enhance the survival of patients with advanced HCC, decision-makers should consider the findings of economic evaluations and affordability before adoption of new therapies.

4.
Int J Biol Macromol ; 275(Pt 1): 133659, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38969045

ABSTRACT

The age-related alterations in pituitary function, including changes in prolactin (PRL) production contributes to the systemic susceptibility to age-related diseases. Our previous research has shown the involvement of Nrg1 in regulating the expression and secretion of PRL. However, the precise role of Nrg1 in mitigating the senescence of pituitary lactotrophs and the underlying mechanisms are yet to be comprehended. Here, data from the GEPIA database was used to evaluate the association between transient receptor potential cation channel subfamily M member 8 (TRPM8) and PRL in normal human pituitary tissues, followed by immunofluorescence verification using a human pituitary tissue microarray. TRPM8 levels showed a significant positive association with PRL expression in normal human pituitary tissues, and both TRPM8 and PRL levels declined during aging, suggesting that TRPM8 may regulate pituitary aging by affecting PRL production. It was also found that treatment with exogenous neuregulin 1 (Nrg1) markedly delayed the senescence of GH3 cells (rat lactotroph cell line) generated by D-galactose (D-gal). In addition, melatonin reduced the levels of senescence-related markers in senescent pituitary cells by promoting Nrg1 / ErbB4 signaling, stimulating PRL expression and secretion. Further investigation showed that Nrg1 attenuated senescence in pituitary cells by increasing TRPM8 expression. Downregulation of TRPM8 activation eliminated Nrg1-mediated amelioration of pituitary cell senescence. These findings demonstrate the critical function of Nrg1 / ErbB signaling in delaying pituitary lactotroph cell senescence and enhancing PRL production via promoting TRPM8 expression under the modulation of melatonin.

5.
J Asian Nat Prod Res ; : 1-13, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38958642

ABSTRACT

Fuzheng Huayu recipe (FZHYR) is a Chinese patent medicine for the treatment of fibrosis. The effects of FZHYR on pulmonary fibrosis and macrophage polarization were investigated in vitro. FZHYR inhibited pulmonary inflammation and fibrosis and M2 polarization of macrophages in bleomycin-induced pulmonary fibrosis (BPF) of rat model. Differentially expressed genes were screened by high-throughput mRNA sequencing and GSEA showed that oxidative phosphorylation (OXPHOS) was correlated with BPF. FZHYR inhibited expressions of Ndufa2 and Ndufa6 in lung tissues of BPF rats. These findings suggest that OXPHOS pathway serves as a possible target for pulmonary fibrosis therapy by FZHYR.

6.
Article in English | MEDLINE | ID: mdl-39009501

ABSTRACT

BACKGROUND: Oxidized forms of low-density lipoproteins (ox-LDL)-associated endothelial dysfunction and subsequent monocyte adhesion play an important role in the development of atherosclerosis (AS). Bezafibrate (BEZ) is a peroxisome proliferator-activated receptor (pan-PPAR) agonist licensed as a hypolipidemic drug. However, the effects of BEZ on endothelial dysfunction are less reported. OBJECTIVES: In this study, we aim to investigate the protective effects of BEZ on ox-LDL-challenged vascular endothelial cells to evaluate its potential value in treating AS. METHODS: Human aortic endothelial cells (HAECs) and THP-1 cells were used to establish an In Vitro AS model. Cell Counting Kit-8 (CCK-8) assay, Real-time PCR, Western blot analysis, and Enzyme-linked immunosorbent assay (ELISA) were used to test the data. RESULTS: As expected, treatment with BEZ suppressed the expression of vascular endothelial growth factor A (VEGF-A), tissue factor (TF), Interleukin 12 (IL-12), tumor necrosis factor (TNF-α), and monocyte chemoattractant protein-1 (MCP-1). BEZ was also found to inhibit ox-LDL-induced expression of the endothelial adhesion molecules vascular cellular adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) in HAECs. Correspondingly, BEZ prevented attachment of THP-1 monocytes to ox-LDL-incubated HAECs. Mechanically, BEZ was found to prevent NF-κB activation by reducing the levels of nuclear NF-κB p65 and inhibiting luciferase activity of NF-κB. CONCLUSION: Our study revealed the pharmacological function of BEZ in protecting endothelial dysfunction against ox-LDL, which may provide valuable insight for the clinical application of BEZ.

7.
Mater Horiz ; 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39005219

ABSTRACT

All-inorganic lead-free CsSnI3 has shown promising potential in optoelectronic applications, particularly in near-infrared perovskite light-emitting diodes (Pero-LEDs). However, non-radiative recombination induced by defects hinders the optoelectronic properties of CsSnI3-based Pero-LEDs, limiting their potential applications. Here, we uncovered that ß-CsSnI3 exhibits higher defect tolerance compared to orthorhombic γ-CsSnI3, offering a potential for enhancing the emission efficiency. We further reported on the deposition and stabilization of highly crystalline ß-CsSnI3 films with the assistance of cesium formate to suppress electron-phonon scattering and reduce nonradiative recombination. This leads to an enhanced photoluminescence quantum yield up to ∼10%. As a result, near-infrared LEDs based on ß-CsSnI3 emitters are achieved with a peak external quantum efficiency of 1.81% and excellent stability under a high current injection of 1.0 A cm-2.

8.
Adv Sci (Weinh) ; : e2403101, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39007186

ABSTRACT

Exploring effective antibacterial approaches for targeted treatment of pathogenic bacterial infections with reduced drug resistance is of great significance. Combinational treatment modality that leverages different therapeutic components can improve the overall effectiveness and minimize adverse effects, thus displaying considerable potential against bacterial infections. Herein, red blood cell membrane fuses with macrophage membrane to develop hybrid cell membrane shell, which further camouflages around drug-loaded liposome to fabricate biomimetic liposome (AB@LRM) for precise antibacterial therapy. Specifically, photoactive agent black phosphorus quantum dots (BPQDs) and classical antibiotics amikacin (AM) are loaded in AB@LRM to accurately target the inflammatory sites through the guidance of macrophage membrane and long residence capability of red blood cell membrane, eventually exerting efficacious antibacterial activities. Besides, due to the excellent photothermal and photodynamic properties, BPQDs act as an efficient antibacterial agent when exposed to near-infrared laser irradiation, dramatically increasing the sensitivity of bacteria to antibiotics. Consequently, the synergistic sterilizing effect produced by AB@LRM further restricts bacterial resistance. Upon laser irradiation, AB@LRM shows superior anti-inflammatory and antibacterial properties in models of P. aeruginosa-infected pneumonia and wounds. Hence, this light-activatable antibacterial nanoplatform with good biocompatibility presents great potential to advance the clinical development in the treatment of bacterial infections.

9.
Int J Biol Sci ; 20(9): 3461-3479, 2024.
Article in English | MEDLINE | ID: mdl-38993574

ABSTRACT

Bone-fat balance is crucial to maintain bone homeostasis. As common progenitor cells of osteoblasts and adipocytes, bone marrow mesenchymal stem cells (BMSCs) are delicately balanced for their differentiation commitment. However, the exact mechanisms governing BMSC cell fate are unclear. In this study, we discovered that fibroblast growth factor 9 (Fgf9), a cytokine expressed in the bone marrow niche, controlled bone-fat balance by influencing the cell fate of BMSCs. Histomorphology and cytodifferentiation analysis showed that Fgf9 loss-of-function mutation (S99N) notably inhibited bone marrow adipose tissue (BMAT) formation and alleviated ovariectomy-induced bone loss and BMAT accumulation in adult mice. Furthermore, in vitro and in vivo investigations demonstrated that Fgf9 altered the differentiation potential of BMSCs, shifting from osteogenesis to adipogenesis at the early stages of cell commitment. Transcriptomic and gene expression analyses demonstrated that FGF9 upregulated the expression of adipogenic genes while downregulating osteogenic gene expression at both mRNA and protein levels. Mechanistic studies revealed that FGF9, through FGFR1, promoted adipogenic gene expression via PI3K/AKT/Hippo pathways and inhibited osteogenic gene expression via MAPK/ERK pathway. This study underscores the crucial role of Fgf9 as a cytokine regulating the bone-fat balance in adult bone, suggesting that FGF9 is a potentially therapeutic target in the treatment of osteoporosis.


Subject(s)
Fibroblast Growth Factor 9 , Mesenchymal Stem Cells , Osteoporosis , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Animals , Mesenchymal Stem Cells/metabolism , Fibroblast Growth Factor 9/metabolism , Fibroblast Growth Factor 9/genetics , Mice , Osteoporosis/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Female , Cell Differentiation , Osteogenesis/genetics , MAP Kinase Signaling System , Signal Transduction , Mice, Inbred C57BL , Adipogenesis , Adipose Tissue/metabolism
10.
ACS Appl Mater Interfaces ; 16(26): 34001-34009, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961569

ABSTRACT

Ultrafast electron pulses, generated through femtosecond photoexcitation in nanocathode materials, introduce high-frequency characteristics and ultrahigh temporal-spatial resolution to vacuum micro-nano electronic devices. To advance the development of ultrafast electron sources sensitive to polarized light, we propose an ultrafast pulsed electron source based on a vertical few-layer graphene cold cathode. This source exhibits selective electron emission properties for varying polarization angles, with high switching ratios of 277 (at 0°) and 235 (at 90°). The electron emission of the graphene evolves from cosine to sine as the polarization angle increases from 0° to 90°. The variation of electron emission current with polarization angle is intrinsically related to light absorption, local field enhancement, and photothermal conversion efficiency. A physical mechanism model and semiempirical expression were presented to reveal the MPP and PTE mechanisms at different polarization angles. This tunable conversion between mechanisms indicates potential applications in tunable ultrafast optoelectronic devices.

11.
PeerJ ; 12: e17677, 2024.
Article in English | MEDLINE | ID: mdl-38974410

ABSTRACT

Background: The study aims to evaluate the diagnostic efficacy of contrast-enhanced ultrasound (CEUS) and shear-wave elastography (SWE) in detecting small malignant breast nodules in an effort to inform further refinements of the Breast Imaging Reporting and Data System (BI-RADS) classification system. Methods: This study retrospectively analyzed patients with breast nodules who underwent conventional ultrasound, CEUS, and SWE at Gongli Hospital from November 2015 to December 2019. The inclusion criteria were nodules ≤ 2 cm in diameter with pathological outcomes determined by biopsy, no prior treatments, and solid or predominantly solid nodules. The exclusion criteria included pregnancy or lactation and low-quality images. Imaging features were detailed and classified per BI-RADS. Diagnostic accuracy was assessed using receiver operating characteristic curves. Results: The study included 302 patients with 305 breast nodules, 113 of which were malignant. The diagnostic accuracy was significantly improved by combining the BI-RADS classification with CEUS and SWE. The combined approach yielded a sensitivity of 88.5%, specificity of 87.0%, positive predictive value of 80.0%, negative predictive value of 92.8%, and accuracy of 87.5% with an area under the curve of 0.877. Notably, 55.8% of BI-RADS 4A nodules were downgraded to BI-RADS 3 and confirmed as benign after pathological examination, suggesting the potential to avoid unnecessary biopsies. Conclusion: The integrated use of the BI-RADS classification, CEUS, and SWE enhances the accuracy of differentiating benign and malignant small breast nodule, potentially reducing the need for unnecessary biopsies.


Subject(s)
Breast Neoplasms , Contrast Media , Elasticity Imaging Techniques , Ultrasonography, Mammary , Humans , Female , Elasticity Imaging Techniques/methods , Retrospective Studies , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/pathology , Middle Aged , Adult , Ultrasonography, Mammary/methods , Aged , Sensitivity and Specificity , ROC Curve , Breast/diagnostic imaging , Breast/pathology
12.
Int J Nanomedicine ; 19: 5317-5333, 2024.
Article in English | MEDLINE | ID: mdl-38859953

ABSTRACT

Purpose: The purpose of this study is to address the high mortality and poor prognosis associated with Acute Respiratory Distress Syndrome (ARDS), conditions characterized by acute and progressive respiratory failure. The primary goal was to prolong drug circulation time, increase drug accumulation in the lungs, and minimize drug-related side effects. Methods: Simvastatin (SIM) was used as the model drug in this study. Employing a red blood cell surface-loaded nanoparticle drug delivery technique, pH-responsive cationic nanoparticles loaded with SIM were non-covalently adsorbed onto the surface of red blood cells (RBC), creating a novel drug delivery system (RBC@SIM-PEI-PPNPs). Results: The RBC@SIM-PEI-PPNPs delivery system effectively extended the drug's circulation time, providing an extended therapeutic window. Additionally, this method substantially improved the targeted accumulation of SIM in lung tissues, thereby enhancing the drug's efficacy in treating ARDS and impeding its progression to ARDS. Crucially, the system showed a reduced risk of adverse drug reactions. Conclusion: RBC@SIM-PEI-PPNPs demonstrates promise in ARDS and ARDS treatment. This innovative approach successfully overcomes the limitations associated with SIM's poor solubility and low bioavailability, resulting in improved therapeutic outcomes and fewer drug-related side effects. This research holds significant clinical implications and highlights its potential for broader application in drug delivery and lung disease treatment.


Subject(s)
Erythrocytes , Respiratory Distress Syndrome , Simvastatin , Simvastatin/administration & dosage , Simvastatin/pharmacokinetics , Simvastatin/chemistry , Respiratory Distress Syndrome/drug therapy , Erythrocytes/drug effects , Animals , Lung/drug effects , Humans , Male , Nanoparticle Drug Delivery System/chemistry , Nanoparticle Drug Delivery System/pharmacokinetics , Nanoparticles/chemistry , Nanoparticles/administration & dosage , Mice , Polyethyleneimine/chemistry , Drug Delivery Systems/methods , Drug Carriers/chemistry , Drug Carriers/pharmacokinetics
13.
Brain Behav Immun ; 120: 413-429, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38925413

ABSTRACT

Huntington's disease (HD) is a hereditary neurodegenerative disorder characterized by involuntary movements, cognitive deficits, and psychiatric symptoms. Currently, there is no cure, and only limited treatments are available to manage the symptoms and to slow down the disease's progression. The molecular and cellular mechanisms of HD's pathogenesis are complex, involving immune cell activation, altered protein turnover, and disturbance in brain energy homeostasis. Microglia have been known to play a dual role in HD, contributing to neurodegeneration through inflammation but also enacting neuroprotective effects by clearing mHTT aggregates. However, little is known about the contribution of microglial metabolism to HD progression. This study explores the impact of a microglial metabolite transporter, equilibrative nucleoside transporter 3 (ENT3), in HD. Known as a lysosomal membrane transporter protein, ENT3 is highly enriched in microglia, with its expression correlated with HD severity. Using the R6/2 ENT3-/- mouse model, we found that the deletion of ENT3 increases microglia numbers yet worsens HD progression, leading to mHTT accumulation, cell death, and disturbed energy metabolism. These results suggest that the delicate balance between microglial metabolism and function is crucial for maintaining brain homeostasis and that ENT3 has a protective role in ameliorating neurodegenerative processes.

14.
Aquat Toxicol ; 273: 107008, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38941808

ABSTRACT

Environmental estrogens (EEs) are found extensively in natural waters and negatively affect fish reproduction. Research on the reproductive toxicity of EEs mixtures in fish at environmentally relevant concentrations is scarce. In this study, adult male zebrafish were exposed for 60 days to EES (a mixture of EEs), EE2-low (5.55 ng/L, with an estrogenic potency equal to EES), and EE2-high (11.1 ng/L). After exposure, the expression levels of vtg1, vtg3, and esr1 in the livers in EES-treated fish remained unaltered, whereas they were significantly increased in EE2-treated fish. Both EE2-high and EES exposures notably reduced the gonad somatic index and sperm count. A disrupted spermatogenesis was also observed in the testes of EE2-high- and EES-exposed fish, along with an alteration in the expression of genes associated with spermatogonial proliferation (pcna, nanog), cell cycle transition (cyclinb1, cyclind1), and meiosis (aldh1a2, cyp26a1, sycp3). Both EE2 and EES significantly lowered plasma 11-ketotestosterone levels in males, likely by inhibiting the expression level of genes for its synthesis (scc, cyp17a1 and cyp11b2), and increased 17ß-estradiol (E2) levels, possibly through upregulating the expression of cyp19a1a. A significant increase in tnfrsf1a expression and the tnfrsf1a/tnfrsf1b ratio in EE2-high and EES-treated males also suggests increased apoptosis via the extrinsic pathway. Further investigation showed that both EE2-high and EES diminished the sexual behavior of male fish, accompanied with reduced E2 levels in the brain and the expression of genes in the kisspeptin/gonadotropin-releasing hormone system. Interestingly, the sexual behavior of unexposed females paired with treated males was also reduced, indicating a synergistic effect. This study suggests that EES have a more severe impact on reproduction than EE2-low, and EEs could interfere not only with spermatogenesis in fish, but also with the sexual behaviors of both exposed males and their female partners, thereby leading to a more significant disruption in fish reproduction.

15.
Water Res ; 260: 121927, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38941866

ABSTRACT

Waterborne pathogens are threatening public health globally, but profiling multiple human pathogenic bacteria (HPBs) in various polluted environments is still a challenge due to the absence of rapid, high-throughput and accurate quantification tools. This work developed a novel chip, termed the HPB-Chip, based on high-throughput quantitative polymerase chain reactions (HT-qPCR). The HPB-Chip with 33-nL reaction volume could simultaneously complete 10,752 amplification reactions, quantifying 27 HPBs in up to 192 samples with two technical replicates (including those for generating standard curves). Specific positive bands of target genes across different species and single peak melting curves demonstrated high specificity of the HPB-Chip. The mixed plasmid serial dilution test validated its high sensitivity with the limit of quantification (LoD) of averaged 82 copies per reaction for 25 target genes. PCR amplification efficiencies and R2 coefficients of standard curves of the HPB-Chip averaged 101 % and 0.996, respectively. Moreover, a strong positive correlation (Pearson' r: 0.961-0.994, P < 0.001) of HPB concentrations (log10 copies/L) between HPB-Chip and conventional qPCR demonstrated high accuracy of the HPB-Chip. Subsequently, the HPB-Chip has been successfully applied to absolutely quantify 27 HPBs in municipal and hospital wastewater treatment plants (WWTPs) after PMA treatment. A total of 17 HPBs were detected in the 6 full-scale WWTPs, with an additional 19 in the hospital WWTP. Remarkably, Acinetobacter baumannii, Legionella pneumophila, and Arcobacter butzler were present in the final effluent of each municipal WWTP. Overall, the HPB-Chip is an efficient and accurate high-throughput quantification tool to comprehensively and rapidly quantify 27 HPBs in the environment.

16.
BMC Infect Dis ; 24(1): 641, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38926635

ABSTRACT

PURPOSE: Since May 2022, Mpox has spread extensively outside of Africa, posing a serious threat to the health of people globally, and particularly to the men who have sex with men (MSM) population. Chongqing, a province in Southwest China, has relatively large MSM and people living with HIV (PLWH) populations, presenting conditions conducive to the wide dissemination of Mpox. In this study, we investigated the clinical characteristics of Mpox patients among MSM and PLWH in Chongqing, aiming to inform the development of targeted prevention, control, and treatment strategies for Mpox. METHOD: We evaluated the clinical characteristics, travel history, time of onset, distribution and number of skin lesions of Mpox patients admitted to the Chongqing Public Health Medical Center between September 2022 and October 2023. Meanwhile, a series of clinical samples were collected and the pathogen of interest was identified as Mpox virus using quantitative polymerase chain reaction (qPCR). The results were presented in the form of cycle thresholds (Ct), which help to approximate the quantification of viral load. RESULTS: As of October 11, 2023, the Chongqing Public Health Medical Center reported a total of nine Mpox virus infections. All the patients identified were male and belonged to the MSM population, among whom seven (77.8%) were living with HIV, and maintained a preserved immune system while achieving viral suppression via effective ART. We observed no discernible clinical differences between MSM with Mpox with or without HIV, and no fatalities were recorded. Viral loads were observed to be higher in samples taken from the skin than those from the throat, nasopharynx, blood, or semen. CONCLUSION: In this retrospective study, the clinical manifestations of MPXV infection appeared consistent among MSM patients, regardless of HIV status. Elevated MPXV viral loads in the skin and mucosal tissues, particularly at genital and anal sites, indicate that transmission is more likely to occur via direct physical contact as opposed to respiratory pathways or through exposure to bodily fluids.


Subject(s)
HIV Infections , Homosexuality, Male , Viral Load , Humans , Male , China/epidemiology , Retrospective Studies , Adult , Homosexuality, Male/statistics & numerical data , HIV Infections/virology , HIV Infections/epidemiology , HIV Infections/drug therapy , Middle Aged , Young Adult , Female
17.
Abdom Radiol (NY) ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38839650

ABSTRACT

PURPOSE: To investigate the renal fat deposition on Dixon-based magnetic resonance imaging (MRI) and to explore the predictive value of renal fat biomarkers of magnetic resonance (MR-RFBs) for early kidney damage in obesity. METHODS: This prospective study included 56 obese volunteers and 47 non-obese healthy volunteers. All volunteers underwent renal magnetic resonance examinations. The differences in MR-RFBs [including renal proton density fat fraction (PDFF), renal sinus fat volume (RSFV), and perirenal fat thickness (PRFT)] measured on Dixon-based MRI between the obese and non-obese volunteers were analyzed using a general linear model, taking sex, age, diabetes, and hypertension as covariates. The relationship between estimated glomerular filtration rate (eGFR) and demographic, laboratory, and imaging parameters in obese volunteers was examined by correlation analysis. RESULTS: Obese volunteers had higher MR-RFBs than non-obese volunteers after controlling for confounders (all p < 0.001). Renal PDFF (r = - 0.383; p = 0.004), RSFV (r = - 0.368; p = 0.005), and PRFT (r = - 0.451; p < 0.001) were significantly negatively correlated with eGFR in obesity. After adjusting for age, sex, body mass index, diabetes, hypertension, visceral adipose tissue, subcutaneous adipose tissue, renal PDFF, and RSFV, PRFT remained independently negatively associated with eGFR (ß = - 0.587; p = 0.003). CONCLUSIONS: All MR-RFBs are negatively correlated with eGFR in obesity. The MR-RFBs, especially PRFT, may have predictive value for early kidney damage in obesity.

18.
Front Public Health ; 12: 1323820, 2024.
Article in English | MEDLINE | ID: mdl-38835614

ABSTRACT

Objective: To evaluate the long-term gastrointestinal (GI) symptoms and sleep quality sequelae in adolescents with COVID-19. Methods: Between June and July 2023, an online survey was done in Xiaoshan District, Hangzhou City, Zhejiang Province, China, using the GI Symptom Rating Scale (GSRS) and the Pittsburgh Sleep Quality Inventory (PSQI). Results: GI symptoms in COVID-19 patients increased by 11.86% compared to before infection, while sleep quality decreased by 10.9%. Over time, there was a significant increase in the cumulative incidence rate of GI symptoms and sleep disorders (p < 0.001). Follow-up of COVID-19 positive patients within 6 months of infection showed that GI symptoms and sleep quality began to ease starting from the first month after infection. Further analysis indicated a significant linear relationship between the severity of GI symptoms and sleep quality (R > 0.5, p < 0.001). Moreover, females, older age, and higher education were identified as risk factors influencing the long-term effects of COVID-19. Conclusion: SARS-CoV-2 affects GI symptoms and sleep quality in adolescents during both the acute phase and post-infection periods. Over time, these symptoms gradually alleviate. A significant correlation exists between GI symptoms and sleep quality.


Subject(s)
COVID-19 , Gastrointestinal Diseases , Sleep Quality , Sleep Wake Disorders , Humans , COVID-19/epidemiology , COVID-19/complications , Adolescent , Female , Male , Gastrointestinal Diseases/epidemiology , Gastrointestinal Diseases/etiology , China/epidemiology , Retrospective Studies , Sleep Wake Disorders/epidemiology , SARS-CoV-2 , Surveys and Questionnaires , Risk Factors
19.
Int J Nanomedicine ; 19: 5173-5191, 2024.
Article in English | MEDLINE | ID: mdl-38855733

ABSTRACT

Purpose: Acne vulgaris is a chronic inflammatory skin disorder centered on hair follicles, making hair follicle-targeted delivery of anti-acne drugs a promising option for acne treatment. However, current researches have only focused on the delivering to healthy hair follicles, which are intrinsically different from pathologically clogged hair follicles in acne vulgaris. Patients and Methods: Azelaic acid (AZA) micro/nanocrystals with different particle sizes were prepared by wet media milling or high-pressure homogenization. An experiment on AZA micro/nanocrystals delivering to healthy hair follicles was carried out, with and without the use of physical enhancement techniques. More importantly, it innovatively designed an experiment, which could reveal the ability of AZA micro/nanocrystals to penetrate the constructed clogged hair follicles. The anti-inflammatory and antibacterial effects of AZA micro/nanocrystals were evaluated in vitro using a RAW264.7 cell model stimulated by lipopolysaccharide and a Cutibacterium acnes model. Finally, both the anti-acne effects and skin safety of AZA micro/nanocrystals and commercial products were compared in vivo. Results: In comparison to commercial products, 200 nm and 500 nm AZA micro/nanocrystals exhibited an increased capacity to target hair follicles. In the combination group of AZA micro/nanocrystals and ultrasound, the ability to penetrate hair follicles was further remarkably enhanced (ER value up to 9.6). However, toward the clogged hair follicles, AZA micro/nanocrystals cannot easily penetrate into by themselves. Only with the help of 1% salicylic acid, AZA micro/nanocrystals had a great potential to penetrate clogged hair follicle. It was also shown that AZA micro/nanocrystals had anti-inflammatory and antibacterial effects by inhibiting pro-inflammatory factors and Cutibacterium acnes. Compared with commercial products, the combination of AZA micro/nanocrystals and ultrasound exhibited an obvious advantage in both skin safety and in vivo anti-acne therapeutic efficacy. Conclusion: Hair follicle-targeted delivery of AZA micro/nanocrystals provided a satisfactory alternative in promoting the treatment of acne vulgaris.


Subject(s)
Acne Vulgaris , Anti-Bacterial Agents , Dicarboxylic Acids , Hair Follicle , Nanoparticles , Acne Vulgaris/drug therapy , Animals , Mice , Dicarboxylic Acids/chemistry , Dicarboxylic Acids/pharmacology , Hair Follicle/drug effects , RAW 264.7 Cells , Nanoparticles/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Humans , Particle Size , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/administration & dosage , Drug Delivery Systems/methods , Skin/drug effects , Skin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...