Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Discov Nano ; 19(1): 53, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38503968

ABSTRACT

Global crop protection and food security have become critical issues to achieve the 'Zero Hunger' goal in recent years, as significant crop damage is primarily caused by biotic factors. Applying nanoparticles in agriculture could enhance crop yield. Nano-silver, or AgNPs, have colossal importance in many fields like biomedical, agriculture, and the environment due to their antimicrobial potential. In this context, nano-silver was fabricated by Citrus medica L. (Cm) fruit juice, detected visually and by UV-Vis spectrophotometric analysis. Further, AgNPs were characterized by advanced techniques. UV-Vis spectroscopic analysis revealed absorbance spectra at around 487 nm. The zeta potential measurement value was noted as -23.7 mV. Spectral analysis by FT-IR proved the capping of the acidic groups. In contrast, the XRD analysis showed the Miller indices like the face-centered cubic (fcc) crystalline structure. NTA revealed a mean size of 35 nm for nano-silver with a 2.4 × 108 particles mL-1 concentration. TEM analysis demonstrated spherical Cm-AgNPs with 20-30 nm sizes. The focus of this research was to evaluate the antifungal activity of biogenic AgNPs against post-harvest pathogenic fungi, including Aspergillus niger, A. flavus, and Alternaria alternata. The Cm-AgNPs showed significant antifungal activity in the order of A. niger > A. flavus > A. alternata. The biogenic Cm-AgNPs can be used for the inhibition of toxigenic fungi.

2.
Chemosphere ; 349: 140782, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38013028

ABSTRACT

To evaluate the environmental concerns associated with heavy metals (HMs) during their translocations in food chains, it is crucial to gather data on the types of HMs present in soils in order to ascertain their toxicity and potential to migrate. An overview of the findings from several physical techniques used to determine and identify the HMs, sediments, individual minerals, and organic components in contaminated agricultural and industrial soils, is provided in this review article. These studies cover a variety of X-ray-based analytical techniques, including most widely used ones like X-ray absorption near edge structure, extended X-ray absorption fine structure, X-ray diffraction, and less popular ones X-ray fluorescence, etc. When compared to techniques that rely on laboratory radiation sources, synchrotron radiation offers more precision and efficiency. These methods could pinpoint the primary mechanisms influencing the soil's ability to transport contaminants and track their subsequent migration up the food chain.


Subject(s)
Metals, Heavy , Soil Pollutants , Soil/chemistry , X-Rays , Metals, Heavy/analysis , Minerals , Agriculture , Soil Pollutants/analysis
3.
World J Microbiol Biotechnol ; 39(12): 334, 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37807015

ABSTRACT

Antimicrobial resistance (AMR) is a main public health issue and a challenge for the scientific community all over the globe. Hence, there is a burning need to build new bactericides that resist the AMR. The ZnONPs were produced by cell free extract of mint (Mentha piperita L.) leaves. Antibiotics that are ineffective against resistant bacteria like Escherichia coli and Staphylococcus aureus were treated. The antibiotics were first screened, and then antibacterial activity was checked by disk diffusion, and MIC of Mp-ZnONPs individually and using Kanamycin (KAN) were determined against these pathogens by broth microdilution method. The synergism between Mp-ZnONPs and KAN was confirmed by checkerboard assay. The MIC showed robust antibacterial activity against the tested pathogens. The combination of KAN and Mp-ZnONPs reduces the MIC of KAN as it efficiently inhibits E. coli's growth, and KAN significantly enhances the antibacterial activity of Mp-ZnONPs. Taken together, Mp-ZnONPs have strong antimicrobial activity, and KAN significantly improves it against the tested pathogens, which would offer an effective, novel, and benign therapeutic methodology to regulate the incidence. The combination of Mp-ZnONPs and KAN would lead to the development of novel bactericides, that could be used in the formulation of pharmaceutical products.


Subject(s)
Kanamycin , Staphylococcal Infections , Humans , Kanamycin/pharmacology , Escherichia coli , Anti-Bacterial Agents/pharmacology , Staphylococcus aureus , Microbial Sensitivity Tests
4.
Nanomaterials (Basel) ; 13(1)2023 Jan 03.
Article in English | MEDLINE | ID: mdl-36616122

ABSTRACT

Fluorescent nanoparticles have a transformative potential for advanced sensors and devices for point-of-need diagnostics and bioimaging, bypassing the technical burden of meeting the assay performance requirements. Carbon dots (CDs) are rapidly emerging carbon-based nanomaterials. Regardless of their fate, they will find increasing applications. In this study, a simple approach for synthesizing CDs from fruit peels was developed. The CDs were fabricated from Annona squamosa (L.) peels using a carbonization technique through microwave-assisted hydrothermal digestion at temperatures around 200 °C. Synthesized CDs were detected using a UV transilluminator for the preliminary confirmation of the presence of fluorescence. UV-Vis spectrophotometry (absorbance at 505 nm) analysis, zeta potential measurement (-20.8 mV), nanoparticles tracking analysis (NTA) (average size: 15.4 nm and mode size: 9.26 nm), photoluminescence, and Fourier transform infrared (FT-IR) analysis were used to identify the capping functional groups on the CDs. The total quantum yield exhibited was 8.93%, and the field emission scanning electron microscopy (FESEM) showed the size range up to 40 nm. The germinating mung bean (Vigna radiata (L.)) seeds were incubated with biogenically synthesized CDs to check the absorption of CDs by them. The fluorescence was observed under a UV-transilluminator in the growing parts of seeds, indicating the absorption of CDs during the germination, development, and growth. These fluorescent CDs could be used as a bioimaging agent. This novel method of synthesizing CDs was found to be eco-friendly, rapid, and cost-effective.

5.
Heliyon ; 8(11): e11893, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36468119

ABSTRACT

Agriculture is a backbone of global economy and most of the population relies on this sector for their livelihood. Chitosan as a biodegradable material thus can be explored for in various fields in its nano form to replace non-biodegradable and toxic compounds. The chitosan has appealing properties like biocompatibility, non-toxicity, biodegradability, and low allergenic, making it useful in several applications including in agriculture sector. Because of their unique properties, chitosan nanoparticles (ChNPs) are extensively applied as a bioagent in various biological and biomedical processes, including wastewater treatment, plant growth promoter, fungicidal agent, wound healing, and scaffold for tissue engineering. Furthermore, the biocompatibility of chitosan nanoparticles (ChNPs) is reported to have other biological properties such as anti-cancerous, antifungal, antioxidant activities, even induces an immune response in the plant, and helps manage biotic and abiotic stresses. Chitosan can also find its application in wastewater treatment, hydrating agents in cosmetics, the food industry, paper, and the textile industry as adhesive, drug-delivering agent in medical as well as for bioimaging. Since chitosan has low toxicity, the nano-formulation of chitosan can be used for the controlled release of fertilizers, pesticides, and plant growth promoters in agriculture fields. The ChNPs applications in precision farming being a novel approach in recent developments. Here we have comprehensively reviewed the major points in this review are; the synthesis of ChNPs by biological resources, their modification and formulation for increasing its applicability, their modified types, and the different agricultural applications of ChNPs.

6.
IEEE Trans Nanobioscience ; 21(1): 44-54, 2022 01.
Article in English | MEDLINE | ID: mdl-34133281

ABSTRACT

The applications of metal-based nanoparticles (MNPs) in the sustainable development of agriculture and food security have received greater attention in recent years in the science community. Different biological resources have been employed to replace harmful chemicals to reduce metal salts and stabilize MNPs, i.e., green methods for the synthesis have paid attention to the nanobiotechnological advances. This review mainly focused on the applications of green synthesized MNPs for the agriculture sector and food security. Because of the novel domains, the green synthesized MNPs could be helpful in the different areas of agriculture like plant growth promotion, plant disease, and insect/pest management, fungicidal agent, in food security for food packaging, for increasing the shelf life and protection from spoilage, and other purposes. The global scenario of the recent studies on the applications of green synthesized MNPs, particularly in sustainable agriculture and food security, is comprehensively discussed.


Subject(s)
Metal Nanoparticles , Agriculture , Food Security
7.
Appl Environ Microbiol ; 87(22): e0139021, 2021 10 28.
Article in English | MEDLINE | ID: mdl-34495739

ABSTRACT

The exploitation of microorganisms for the fabrication of nanoparticles (NPs) has garnered considerable research interest globally. The microbiological transformation of metals and metal salts into respective NPs can be achieved under environmentally benign conditions, offering a more sustainable alternative to chemical synthesis methods. Species of the metal-reducing bacterial genus Shewanella are able to couple the oxidation of various electron donors, including lactate, pyruvate, and hydrogen, to the reduction of a wide range of metal species, resulting in biomineralization of a multitude of metal NPs. Single-metal-based NPs as well as composite materials with properties equivalent or even superior to physically and chemically produced NPs have been synthesized by a number of Shewanella species. A mechanistic understanding of electron transfer-mediated bioreduction of metals into respective NPs by Shewanella is crucial in maximizing NP yields and directing the synthesis to produce fine-tuned NPs with tailored properties. In addition, thorough investigations into the influence of process parameters controlling the biosynthesis is another focal point for optimizing the process of NP generation. Synthesis of metal-based NPs using Shewanella species offers a low-cost, eco-friendly alternative to current physiochemical methods. This article aims to shed light on the contribution of Shewanella as a model organism in the biosynthesis of a variety of NPs and critically reviews the current state of knowledge on factors controlling their synthesis, characterization, potential applications in different sectors, and future prospects.


Subject(s)
Metal Nanoparticles , Shewanella , Industrial Microbiology , Shewanella/metabolism
8.
J Fungi (Basel) ; 7(2)2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33672011

ABSTRACT

Nanotechnology is a new and developing branch that has revolutionized the world by its applications in various fields including medicine and agriculture. In nanotechnology, nanoparticles play an important role in diagnostics, drug delivery, and therapy. The synthesis of nanoparticles by fungi is a novel, cost-effective and eco-friendly approach. Among fungi, Fusarium spp. play an important role in the synthesis of nanoparticles and can be considered as a nanofactory for the fabrication of nanoparticles. The synthesis of silver nanoparticles (AgNPs) from Fusarium, its mechanism and applications are discussed in this review. The synthesis of nanoparticles from Fusarium is the biogenic and green approach. Fusaria are found to be a versatile biological system with the ability to synthesize nanoparticles extracellularly. Different species of Fusaria have the potential to synthesise nanoparticles. Among these, F. oxysporum has demonstrated a high potential for the synthesis of AgNPs. It is hypothesised that NADH-dependent nitrate reductase enzyme secreted by F. oxysporum is responsible for the reduction of aqueous silver ions into AgNPs. The toxicity of nanoparticles depends upon the shape, size, surface charge, and the concentration used. The nanoparticles synthesised by different species of Fusaria can be used in medicine and agriculture.

9.
IEEE Trans Nanobioscience ; 20(2): 146-153, 2021 04.
Article in English | MEDLINE | ID: mdl-33523815

ABSTRACT

Phytopathogens are responsible for huge losses in the agriculture sector. Amongst them, fungal phytopathogen is quite difficult to control. Many chemicals are available in the market, claiming the high activity against them. However, the development of resistance by the fungal pathogen is the main concern to overcome their menace. Nanotechnology-based products can be a potential alternative to conventional fungicides. Amongst various nanoparticles, Copper nanoparticles (CuNPs) are appearing to be a promising antifungal candidate. It can be synthesized by various methods, but the myco-fabrication appears to be an environmental-friendly approach. Hence, the present study is an attempt to synthesize CuNPs using Aspergillus flavus. The myco-fabricated CuNPs were characterized by UV spectrophotometer, Fourier transform infrared spectroscopy (FTIR), Nanoparticles tracking and analysis system (NTA), Transmission Electron Microscopy (TEM), X-ray diffraction (XRD) and Zeta potential measurement. Myco-fabricated CuNPs showed maximum absorbance at 602 nm and particle size ranging 5-12 nm with the least average size of 8 nm with spherical shape and moderate stability. Myco-fabricated CuNPs tested against selected fungal crop pathogens viz. Aspergillus niger, Fusariumoxysporum, and Alternaria alternata reveal a significant effect. Besides these we have given the hypothetical mechanism depicting the antifungal action of myco-fabricated CuNPs.


Subject(s)
Copper , Metal Nanoparticles , Alternaria , Antifungal Agents/pharmacology , Copper/pharmacology , Fungi , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
10.
IEEE Trans Nanobioscience ; 19(4): 633-639, 2020 10.
Article in English | MEDLINE | ID: mdl-32746333

ABSTRACT

The evaluation of toxic effects of nanoparticles (NPs) has become an important aspect of Nanotechnology research in the 21st century. The present investigation deals with the green synthesis of biogenic zinc oxide nanoparticles (ZnO-NPs) using Bryophyllum pinnatum leaves, their characterization and evaluation of acute oral toxicity in Wistar rats. The characterization of synthesized ZnO-NPs revealed maximum absorbance at 307 nm on UV-Vis spectrophotometric analysis, NTA showed mean size of particles and mode of the particles distribution as 128.2 nm and 12.6 nm, respectively. Zeta potential was found to be -0.369 mV. The absorbance shown by FTIR at 3469, 1644, 1355 and 887 cm-1 indicates the involvement of biomolecules that are accountable for capping and stabilization of ZnO-NPs. The XRD assessment further demonstrated the crystalline nature of the ZnO-NP. The TEM analysis of the synthesized ZnO-NPs revealed the presence of spherical NPs with the mean size of 3.7 nm. The acute oral toxicity evaluation in rat showed an approximate median lethal dose to be more than 2000 mg/kg body weight. It is thus concluded that biogenic ZnO-NPs showed absence of acute oral toxicity symptoms at the doses employed in the present study.


Subject(s)
Green Chemistry Technology/methods , Kalanchoe/chemistry , Metal Nanoparticles , Zinc Oxide , Administration, Oral , Animals , Female , Metal Nanoparticles/administration & dosage , Metal Nanoparticles/chemistry , Metal Nanoparticles/toxicity , Plant Extracts/chemistry , Plant Extracts/metabolism , Plant Leaves/chemistry , Rats , Rats, Wistar , Toxicity Tests , Zinc Oxide/administration & dosage , Zinc Oxide/chemistry , Zinc Oxide/metabolism , Zinc Oxide/toxicity
11.
IET Nanobiotechnol ; 13(6): 609-616, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31432794

ABSTRACT

Here, a rapid and easy transformation by electroporation technique for gene transfer in plants using cell penetrating amino nanocomplex (nanoplex) has been demonstrated in Nicotiana. Nanoplex was prepared using cell penetrating amino acids (CPAs) such as poly-L-lysine (PLL) and Argenine (Arg), in combination with the gold nanoparticles (AuNPs). PLLs-modified nanoplex with zeta potential of 34.2 ± 1.22 mV charge showed 63.3% efficiency for gene transformation in plant cells as compared to 60% when modified with Arg and the zeta potential was found to be 30.0 ± 0.83 mV; whereas, the transformation efficiency without nanoplex was found to be 6.6%. The findings indicate that the zeta potential of positively charged nanocomplex (AuNPs/CPAs/DNA/CPAs) increases the transformation efficiency because of their ability to protect the DNA from electroporation wave and endogenous enzyme damage. Transformation was confirmed by GUS assay and amplification of npt gene. This technique may open up new possibilities of gene transfer in plants, which will enable to produce large number of transgenic plants.


Subject(s)
Electroporation/methods , Gene Transfer Techniques , Gold/chemistry , Metal Nanoparticles/chemistry , Plants/genetics , Transformation, Genetic/physiology , Agrobacterium tumefaciens , Cells, Cultured , DNA, Plant/genetics , Plant Cells/drug effects , Plant Cells/metabolism , Plants, Genetically Modified , Nicotiana/cytology , Nicotiana/genetics
12.
World J Microbiol Biotechnol ; 31(6): 865-73, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25761857

ABSTRACT

We report an eco-friendly method for the synthesis of copper nanoparticles (CuNPs) using Citron juice (Citrus medica Linn.), which is nontoxic and cheap. The biogenic copper nanoparticles were characterized by UV-Vis spectrophotometer showing a typical resonance (SPR) at about 631 nm which is specific for CuNPs. Nanoparticles tracking analysis by NanoSight-LM20 showed the particles in the range of 10-60 nm with the concentration of 2.18 × 10(8) particles per ml. X-ray diffraction revealed the FCC nature of nanoparticles with an average size of 20 nm. The antimicrobial activity of CuNPs was determined by Kirby-Bauer disk diffusion method against some selected species of bacteria and plant pathogenic fungi. It was reported that the synthesized CuNPs demonstrated a significant inhibitory activity against Escherichia coli followed by Klebsiella pneumoniae, Pseudomonas aeruginosa, Propionibacterium acnes and Salmonella typhi. Among the plant pathogenic fungi tested, Fusarium culmorum was found to be most sensitive followed by F. oxysporum and F. graminearum. The novelty of this work is that for the first time citron juice was used for the synthesis of CuNPs.


Subject(s)
Anti-Infective Agents/metabolism , Citrus/metabolism , Copper/metabolism , Nanoparticles/metabolism , Plant Extracts/metabolism , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Copper/chemistry , Copper/pharmacology , Fungi/drug effects , Gram-Negative Bacteria/drug effects , Microbial Sensitivity Tests , Nanoparticles/chemistry , Spectrophotometry , X-Ray Diffraction
13.
Biotechnol Prog ; 31(2): 557-65, 2015.
Article in English | MEDLINE | ID: mdl-25607830

ABSTRACT

Nanobiotechnological application of copper nanoparticles has paved the way for advancement in agriculture owing to its bactericidal and fungicidal activities. Recently, researchers have focussed on bioinspired synthesis of copper nanoparticles as a viable alternative to existing physicochemical techniques. For the commercialization of nanocopper, the toxicity evaluation is a major issue. In this context, Citrus medica (L.) fruit extract-mediated copper nanoparticles were synthesized and its different concentrations (10, 20, 40, 60, 80, and 100 µg mL(-1) ) were evaluated for its effect on actively dividing cells of Allium cepa. The study clearly revealed that copper nanoparticles increased mitotic index up to the concentration of 20 µg mL(-1) . In addition, a gradual decline in mitotic index and increase in abnormality index was observed as the concentration of copper nanoparticles and treatment duration were increased. Aberrations in chromosomal behavior such as sticky and disturbed chromosomes in metaphase and anaphase, c-metaphase, bridges, laggard, disturbed telophase, and vacuolated nucleus were also observed.


Subject(s)
Cell Proliferation/drug effects , Copper/toxicity , Metal Nanoparticles/toxicity , Mitosis/drug effects , Onions/cytology , Cells, Cultured , Chromosome Aberrations/chemically induced , Copper/chemistry , Copper/metabolism , Metal Nanoparticles/chemistry , Mitotic Index , Plant Roots/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...