Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 9(11): 12602-12610, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38524437

ABSTRACT

Background: Head and neck squamous cell carcinoma (HNSCC) is one of the major types of cancer, with 900,000 cases and over 400,000 deaths annually. It constitutes 3-4% of all cancers in Europe and western countries. As early diagnosis is the key to treating the disease, reliable biomarkers play an important role in the precision medicine of HNSCC. Despite treatments, the survival rate of cancer patients remains unchanged, and this is mainly due to the failure to detect the disease early. Thus, the objective of this study is to identify reliable biomarkers for head and neck cancers for better healthcare management. Methods: In this study, all available, curated human genes were screened for their expression against HNSCC TCGA patient samples using genomic and proteomic data by various bioinformatic approaches and datamining. Docking studies were performed using AutoDock or online virtual screening tools for identifying potential ligands. Results: Sixty genes were short-listed, and most of them show a consistently higher expression in head and neck patient samples at both the mRNA and the protein level. Irrespective of human papillomavirus (HPV) status, all of them show a higher expression in cancer samples. The higher expression of 30 genes shows adverse effects on patient survival. Out of the 60 genes, 12 genes have crystal structures and druggable potential. We show that genes such as GTF2H4, HAUS7, MSN, and MNDA could be targets of Pembrolizumab and Nivolumab, which are approved monoclonal antibodies for HNSCC. Conclusion: Sixty genes are identified as potential biomarkers for head and neck cancers based on their consistent and statistically significantly higher expression in patient samples. Four proteins have been identified as potential drug targets based on their crystal structure. However, the utility of these candidate genes has to be further tested using patient samples.

2.
ACS Omega ; 7(40): 35735-35742, 2022 Oct 11.
Article in English | MEDLINE | ID: mdl-36237732

ABSTRACT

Severe acute respiratory syndrome involving corona virus-2 (SARS-CoV-2) has been implied to cause COVID-19 disease, leading to an unprecedented health emergency across the globe with a staggering figure of mortality rate. Measures to control the pandemic are pushing the economy into a tailspin, putting burden not only on the individuals but also on the nations. Despite the widespread infection rates, young people have shown better recovery rate while COVID-19 symptoms are more pronounced in elderly and people with comorbid conditions such as diabetes, cardiac and respiratory diseases. Cancer is a highly prevalent disease affecting millions of individuals. In this study, we analyzed the expression status of genes that are required for SARS-CoV-2 infectivity and its propagation to assess the susceptibility of certain cancer patients to infection and subsequent complications. Our data indicate that patients with colon, rectum, cholangiocarcinoma, lung adenoma, kidney renal papillary cell carcinoma and kidney renal clear cell carcinoma are more at risk for COVID-19. Genes that are responsible for severe COVID-19 are also highly expressed in many cancer types. We also carried out the association rule mining analysis which is helpful in predicting the expression of proviral genes in various cancers.

3.
Eur Biophys J ; 50(5): 745-757, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33787949

ABSTRACT

Lead and mercury being common environmental pollutants are often associated with erythrocytes, where phosphatidylserine (PS) exposure-mediated procoagulant activation is induced. Human phospholipid scramblase 1 (hPLSCR1) identified in the erythrocyte membrane is a type II transmembrane protein involved in Ca2+-dependent bidirectional scrambling of phospholipids (PL) during blood coagulation, cell activation, and apoptosis. The prominent role of hPLSCR1 in Pb2+ and Hg2+ poisoning was demonstrated by a biochemical assay, where recombinant hPLSCR1 induced PL scrambling across bilayer with a higher binding affinity (Kd) towards Hg2+ (4.1 µM) and Pb2+ (5.8 µM) than Ca2+ (25.6 mM). The increased affinity could be the outcome of heavy metals interacting at auxiliary sites other than the calcium-binding motif of hPLSCR1. Similar to other metal-binding proteins, cysteine-based metal-binding motifs could be the potential additional binding sites in hPLSCR1. To explore the hypothesis, the cysteines were chemically modified, which significantly reduced only the Hg2+- and Pb2+-induced scrambling activity leaving Ca2+-induced activity unaltered. Recombinant constructs with deletion of prominent cysteine residues and point mutation in the calcium-binding motif including Δ100-hPLSCR1, Δ160-hPLSCR1, and D275A-hPLSCR1 were generated, purified, and assayed for scramblase activity. The cysteine-deleted constructs of hPLSCR1 showed reduced binding affinity (Kd) for Hg2+ and Pb2+ without altering the Ca2+-binding affinity whereas the point mutant had completely lost its affinity for Ca2+ and reduced affinities for Hg2+ and Pb2+. The results accentuated the significance of cysteine residues as additional binding sites for heavy metal ions in hPLSCR1.


Subject(s)
Phospholipid Transfer Proteins/chemistry , Calcium/metabolism , Cysteine , Humans , Lead/toxicity , Mercury/toxicity , Phospholipid Transfer Proteins/genetics , Phospholipids
4.
Chem Res Toxicol ; 26(6): 918-25, 2013 Jun 17.
Article in English | MEDLINE | ID: mdl-23659204

ABSTRACT

Human phospholipid scramblase 1(hPLSCR1) is a transmembrane protein involved in bidirectional scrambling of plasma membrane phospholipids during cell activation, blood coagulation, and apoptosis in response to elevated intracellular Ca(2+) levels. Pb(2+) and Hg(2+) are known to cause procoagulant activation via phosphatidylserine exposure to the external surface in erythrocytes, resulting in blood coagulation. To explore its role in lead and mercury poisoning, hPLSCR1 was overexpressed in Escherichia coli BL21 (DE3) and purified using affinity chromatography. The biochemical assay showed rapid scrambling of phospholipids in the presence of Hg(2+) and Pb(2+). The binding constant (Ka) was calculated and found to be 250 nM(-1) and 170 nM(-1) for Hg(2+) and Pb(2+), respectively. The intrinsic tryptophan fluorescence and far ultraviolet circular dichroism studies revealed that Hg(2+) and Pb(2+) bind to hPLSCR1 and induce conformational changes. hPLSCR1 treated with protein modifying reagent N-ethylmaleimide before functional reconstitution showed 40% and 24% inhibition in the presence of Hg(2+) and Pb(2+), respectively. This is the first biochemical evidence to prove the above hypothesis that hPLSCR1 is activated in heavy metal poisoning, which leads to bidirectional transbilayer movement of phospholipids.


Subject(s)
Lead/pharmacology , Lipid Bilayers/metabolism , Mercury/pharmacology , Phospholipid Transfer Proteins/metabolism , Phospholipids/metabolism , Humans , Lipid Bilayers/chemistry , Phospholipid Transfer Proteins/genetics , Phospholipid Transfer Proteins/isolation & purification , Phospholipids/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...