Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 696
Filter
1.
J Phys Chem Lett ; : 7028-7035, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949686

ABSTRACT

Traditional electron counting rules, like the Jellium model, have long been successfully utilized in designing superhalogens by modifying clusters to have one electron less than a filled electronic shell. However, this shell-filling approach, which involves altering the intrinsic properties of the clusters, can be complex and challenging to control, especially in experiments. In this letter, we theoretically establish that the oriented external electric field (OEEF) can substantially enhance the electron affinity (EA) of diverse aluminum-based metal clusters with varying valence electron configurations, leading to the creation of superhalogen species without altering their shell arrangements. This OEEF approach offers a noninvasive alternative to traditional superatom design strategies, as it does not disrupt the clusters' geometrical structures and superatomic states. These findings contribute a vital piece to the puzzle of constructing superalkalis and superhalogens, extending beyond conventional shell-filling strategies and potentially expanding the range of applications for functional clusters.

2.
J Phys Chem A ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38968435

ABSTRACT

Liquid-phase synthesis of atomically precise nanoclusters has experienced rapid development recently, where polar solvents are indispensable in such a process. However, the regulation effect of solvents on the structural and electronic properties of different metal clusters and cluster assembly materials is still not well understood. Herein, a comprehensive density functional theory calculation has been performed to explore the solvation effect on heteroatom-doped endohedral gold clusters that always have remarkable stabilities and tunable electronic structures. The solvation free energy of the M@Au12 clusters (M = Cr, Mo, W, Co, Rh, Ir, Cu, Ag, and Au) was found to be related to the charge distribution of the central doped-atom M and the outer Au12 cage. Moreover, the aqueous solvent was observed to be able to increase the adsorption capacity of M@Au12 to O2 following the activation of O2 through the charge transfer from M@Au12 to O2, in which the transferred electrons occupy the π antibonding orbital of O2. In addition, the water solvent can also improve the hydrogenation reaction of O2 to form OOH over M@Au12, where the activation energy barrier for this process is very low with the participation of the solvent. Considering the importance of solvents in the liquid-phase synthesis of atomically precise clusters, these findings highlighted here could provide valuable theoretical guidance in potential applications of functional gold nanoclusters, especially in the liquid-phase cluster catalysis.

3.
Life Sci ; : 122893, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38971367

ABSTRACT

AIMS: Neonatal necrotizing enterocolitis (NEC) is a leading cause of intestine inflammatory disease, and macrophage is significantly activated during NEC development. Posttranslational modifications (PTMs) of proteins, particularly ubiquitination, play critical roles in immune response. This study aimed to investigate the effects of ubiquitin-modified proteins on macrophage activation and NEC, and discover novel NEC-related inflammatory proteins. MATERIALS AND METHODS: Proteomic and ubiquitin proteomic analyses of intestinal macrophages in NEC/healthy mouse pups were carried out. In vitro macrophage inflammation model and in vivo NEC mouse model, as well as clinical human samples were used for further verification the inhibitor of nuclear factor-κB kinase α (IKKα) ubiquitination on NEC development through Western blot, immunofluorescence, quantitative real-time polymerase chain reaction (qRT-PCR) and flow cytometry. KEY FINDINGS: We report here that IKKα was a new ubiquitin-modified protein during NEC through ubiquitin proteomics, and RING finger protein 31 (RNF31) acted as an E3 ligase to be involved in IKKα degradation. Inhibition of IKKα ubiquitination and degradation with siRNF31 or proteasome inhibitor decreased nuclear factor-κB (NF-κB) activation, thereby decreasing the expression of pro-inflammatory factors and M1 macrophage polarization, resulting in reliving the severity of NEC. SIGNIFICANCE: Our study suggests the activation of RNF31-IKKα-NF-κB axis triggering NEC development and suppressing RNF31-mediated IKKα degradation may be therapeutic strategies to be developed for NEC treatment.

4.
J Cardiothorac Surg ; 19(1): 423, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38970107

ABSTRACT

OBJECTIVE: To compare the treatment outcomes among percutaneous mechanical thrombectomy (PMT) with AngioJet, Catheter-directed thrombolysis (CDT), and a combination of both. METHODS: One hundred forty nine patients with acute or sub-acute iliac-femoral vein thrombosis accepting CDT and/or PMT were divided into three groups respectively: PMT group, CDT group, PMT + CDT group (PMT followed by CDT). The severity of thrombosis was evaluated by venographic scoring system. Technical success was defined as restored patent deep venous blood flow after CDT and/or PMT. Clinical follow-up were assessed by ultrasound or venography imaging. The primary endpoints were recurrence of DVT, and severity level of post-thrombotic syndrome (PTS) during the follow-up. RESULTS: Technical success and immediate clinical improvements were achieved on all patients. The proportion of sub-acute DVT and the venographic scoring in PMT + CDT group were significantly higher than that in CDT group and PMT group (proportion of sub-acute DVT: p = 0.032 and p = 0.005, respectively; venographic scoring: p < 0.001, respectively). The proportion of May-Thurner Syndrome was lower in PMT group than that in CDT and PMT + CDT group (p = 0.026 and p = 0.005, respectively). The proportion of DVT recurrence/stent thrombosis was significantly higher in CDT group than that in PMT + CDT group (p = 0.04). The severity of PTS was the highest in CDT group ( χ2 = 14.459, p = 0.006) compared to PMT group (p = 0.029) and PMT + CDT group (p = 0.006). CONCLUSION: Patients with sub-acute DVT, high SVS scoring and combined May-Thurner Syndrome were recommended to take PMT + CDT treatment and might have lower rate of DVT recurrence/stent thrombosis and severe PTS. Our study provided evidence detailing of PMT + CDT therapy.


Subject(s)
Thrombectomy , Thrombolytic Therapy , Venous Thrombosis , Humans , Male , Venous Thrombosis/therapy , Female , Middle Aged , Thrombolytic Therapy/methods , Thrombectomy/methods , Treatment Outcome , Adult , Retrospective Studies , Aged , Iliac Vein/surgery , Iliac Vein/diagnostic imaging , Combined Modality Therapy , Femoral Vein , Postthrombotic Syndrome , Mechanical Thrombolysis/methods , Phlebography
5.
J Endocrinol ; 262(2)2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38829257

ABSTRACT

Cells actively engaged in de novo steroidogenesis rely on an expansive intracellular network to efficiently transport cholesterol. The final link in the transport chain is STARD1, which transfers cholesterol to the enzyme complex that initiates steroidogenesis. However, the regulation of ovarian STARD1 is not fully characterized, and even less is known about the upstream cytosolic cholesterol transporters STARD4 and STARD6. Here, we identified both STARD4 and STARD6 mRNAs in the human ovary but only detected STARD4 protein since the primary STARD6 transcript turned out to be a splice variant. Corpora lutea contained the highest levels of STARD4 and STARD1 mRNA and STARD1 protein, while STARD4 protein was uniformly distributed across ovarian tissues. Cyclic AMP analog (8Br-cAMP) and phorbol ester (PMA) individually increased STARD1 and STARD4 mRNA along with STARD1 protein and its phosphoform in cultured primary human luteinized granulosa cells (hGCs). STARD6 transcripts and STARD4 protein were unresponsive to these stimuli. Combining lower doses of PMA and 8Br-cAMP blunted the 8Br-cAMP stimulation of STARD1 protein. Increasing cholesterol levels by blocking its conversion to steroid with aminoglutethimide or by adding LDL reduced the STARD4 mRNA response to stimuli. Sterol depletion reduced the STARD1 mRNA and protein response to PMA. These data support a possible role for STARD4, but not STARD6, in supplying cholesterol for steroidogenesis in the ovary. We demonstrate for the first time how cAMP, PMA and sterol pathways separately and in combination differentially regulate STARD4, STARD6 and STARD1 mRNA levels, as well as STARD1 and STARD4 protein in human primary ovarian cells.


Subject(s)
Ovary , Humans , Female , Ovary/metabolism , Cholesterol/metabolism , Cells, Cultured , RNA, Messenger/metabolism , Adult , Phosphoproteins/metabolism , Phosphoproteins/genetics , 8-Bromo Cyclic Adenosine Monophosphate/pharmacology , Granulosa Cells/metabolism , Granulosa Cells/drug effects , Gene Expression Regulation/drug effects , Cyclic AMP/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Membrane Transport Proteins
6.
Chemistry ; : e202401886, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38857119

ABSTRACT

Chalcogen bond (ChB) catalysis, as a new type in the field of non-covalent bond catalysis, has become a hot research topic in the field of organocatalysis in recent years. In the present work, we investigated the catalytic performance of a series of hypervalent ChB catalysis based on the intramolecular Aza-Michael reaction of aminochalcone. The reaction includes the carbon-nitrogen bond coupling step (key step) and the proton transfer step. The catalytic performance of mono-dentate pentafluorophenyl chalcogen bond donor ChB1 was comparable to that of bis-dentate chalcogen bond donor ChB4, and stronger than that of mono-dentate chalcogen bond donors ChB2 and ChB3. The formation of the chalcogen bond between the catalyst and the carbonyl oxygen atom of the reactant, causing the charge rearrangement of the reactant and C(1) charge of the -C-Ph group to become more positive, thereby the ChB catalysis promoted the nucleophile reaction. The electron density of the chalcogen bond of the pre-complex, the most positive electrostatic potentials of the catalyst, and the NPA charge of the key atom are proportional to the Gibbs energy barrier of the C-N bond coupling process, which provides an idea to predict the catalytic activity of the ChB catalysis.

7.
BMC Psychol ; 12(1): 327, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38835103

ABSTRACT

BACKGROUND AND RESEARCH OBJECTIVES: Given the enduring popularity of higher education, there has been considerable attention on the correlation between college students' engagement in sports and their academic stress levels. This study seeks to delve deeply into how university physical education fosters academic performance by influencing students' sports interests, particularly in enhancing their psychological resilience to mitigate academic pressure. Through this investigation, the aim is to offer both theoretical underpinnings and empirical evidence to support the holistic enhancement of higher education. RESEARCH METHODS: Initially, this study undertakes an analysis of the fundamental relationship between college students' physical activities and their experience of academic stress. Subsequently, utilizing a structural equation model, specific research models and hypotheses are formulated. These are then examined in detail through the questionnaire method to elucidate the mechanism by which college sports interests alleviate academic stress. RESEARCH FINDINGS: The study reveals a significant positive correlation between psychological resilience and academic stress, indicating that a robust psychological resilience can effectively diminish academic pressure. Furthermore, both the sports atmosphere and sports interest are found to exert a notable positive impact on academic stress, mediated by the variable of psychological toughness. This underscores the pivotal role of physical education in fostering positive psychological traits and enhancing academic achievement. CONCLUSION: This study underscores the central importance of cultivating and nurturing college students' sports interests, as well as fostering a conducive sports atmosphere, in fortifying psychological resilience and mitigating academic pressure. By offering novel perspectives and strategies for alleviating the academic stress faced by college students, this study contributes valuable theoretical insights and practical experiences to the broader development of higher education.


Subject(s)
Resilience, Psychological , Sports , Stress, Psychological , Students , Humans , Stress, Psychological/psychology , Students/psychology , Students/statistics & numerical data , Male , Universities , Sports/psychology , Female , Young Adult , Adult , Academic Performance/psychology , Surveys and Questionnaires , Adolescent
8.
Zhongguo Gu Shang ; 37(6): 6095-15, 2024 Jun 25.
Article in Chinese | MEDLINE | ID: mdl-38910385

ABSTRACT

OBJECTIVE: To explore clinical effect of vancomycin calcium sulfate combined with internal fixation on calcaneal beak-like fracture secondary to calcaneal osteomyelitis caused by diabetic foot. METHODS: From April 2018 to October 2021, a retrospective analysis was performed on 5 patients with calcaneal bone osteomyelitis secondary to diabetic foot, including 2 males and 3 females, aged from 48 to 60 years old;diabetes course ranged from 5 to 13 years;the courses of diabetic foot disease ranged from 18 to 52 days;5 patients were grade Ⅲ according to Wagner classification. All patients were treated with debridement, vancomycin bone cement implantation, negative pressure aspiration at stageⅠ, vancomycin calcium sulfate and internal fixation at stageⅡfor calcaneal beak-like fracture. Surgical incision and fracture healing time were recorded, and the recurrence of osteomyelitis was observed. American Orthopedic Foot Andankle Society (AOFAS) score and exudation at 12 months after operation were evaluated. RESULTS: Five patients were successfully completed operation without lower extremity vascular occlusion, and were followed up for 16 to 36 months. The wound healing time after internal fixation ranged from 16 to 26 days, and healing time of fractures ranged from 16 to 27 weeks. AOFAS score ranged from 65 to 91 at 12 months after operation, and 2 patients got excellent result, 2 good and 1 fair. Among them, 1 patient with skin ulcer on the back of foot caused by scalding at 5 months after operation (non-complication), was recovered after treatment;the wound leakage complication occurred in 2 patients, and were recovered after dressing change. No osteomyelitis or fracture occurred in all patients. CONCLUSION: Vancomycin calcium sulfate with internal fixation in treating calcaneal osteomyelitis secondary to calcaneal osteomyelitis caused by diabetic foot could not only control infection, but also promote fracture healing, and obtain good clinical results.


Subject(s)
Calcaneus , Diabetic Foot , Fracture Fixation, Internal , Osteomyelitis , Humans , Male , Middle Aged , Female , Osteomyelitis/surgery , Osteomyelitis/drug therapy , Osteomyelitis/etiology , Diabetic Foot/surgery , Calcaneus/injuries , Calcaneus/surgery , Retrospective Studies , Fracture Fixation, Internal/methods , Fractures, Bone/complications , Fractures, Bone/surgery
9.
Cell Discov ; 10(1): 62, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38862506

ABSTRACT

Membrane budding, which underlies fundamental processes like endocytosis, intracellular trafficking, and viral infection, is thought to involve membrane coat-forming proteins, including the most observed clathrin, to form Ω-shape profiles and helix-forming proteins like dynamin to constrict Ω-profiles' pores and thus mediate fission. Challenging this fundamental concept, we report that polymerized clathrin is required for Ω-profiles' pore closure and that clathrin around Ω-profiles' base/pore region mediates pore constriction/closure in neuroendocrine chromaffin cells. Mathematical modeling suggests that clathrin polymerization at Ω-profiles' base/pore region generates forces from its intrinsically curved shape to constrict/close the pore. This new fission function may exert broader impacts than clathrin's well-known coat-forming function during clathrin (coat)-dependent endocytosis, because it underlies not only clathrin (coat)-dependent endocytosis, but also diverse endocytic modes, including ultrafast, fast, slow, bulk, and overshoot endocytosis previously considered clathrin (coat)-independent in chromaffin cells. It mediates kiss-and-run fusion (fusion pore closure) previously considered bona fide clathrin-independent, and limits the vesicular content release rate. Furthermore, analogous to results in chromaffin cells, we found that clathrin is essential for fast and slow endocytosis at hippocampal synapses where clathrin was previously considered dispensable, suggesting clathrin in mediating synaptic vesicle endocytosis and fission. These results suggest that clathrin and likely other intrinsically curved coat proteins are a new class of fission proteins underlying vesicle budding and fusion. The half-a-century concept and studies that attribute vesicle-coat contents' function to Ω-profile formation and classify budding as coat-protein (e.g., clathrin)-dependent or -independent may need to be re-defined and re-examined by considering clathrin's pivotal role in pore constriction/closure.

10.
Nano Lett ; 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38860507

ABSTRACT

The majority of dislocations in nitride epilayers are edge threading dislocations (TDs), which diminish the performance of nitride devices. However, it is extremely difficult to reduce the edge TDs due to the lack of available slip systems. Here, we systematically investigate the formation mechanism of edge TDs and find that besides originating at the coalescence boundaries, these dislocations are also closely related to geometrical misfit dislocations at the interface. Based on this understanding, we propose a novel strategy to reduce the edge TD density of the GaN epilayer by nearly 1 order of magnitude via graphene-assisted remote heteroepitaxy. The first-principles calculations confirm that the insertion of graphene dramatically reduces the energy barrier required for interfacial sliding, which promotes a new strain release channel. This work provides a unique approach to directly suppress the formation of edge TDs at the source, thereby facilitating the enhanced performance of photoelectronic and electronic devices.

11.
Front Neurol ; 15: 1407152, 2024.
Article in English | MEDLINE | ID: mdl-38938777

ABSTRACT

Background and objectives: Upwards of 50% of acute ischemic stroke (AIS) survivors endure varying degrees of disability, with a recurrence rate of 17.7%. Thus, the prediction of outcomes in AIS may be useful for treatment decisions. This study aimed to determine the applicability of a machine learning approach for forecasting early outcomes in AIS patients. Methods: A total of 659 patients with new-onset AIS admitted to the Department of Neurology of both the First and Second Affiliated Hospitals of Bengbu Medical University from January 2020 to October 2022 included in the study. The patient' demographic information, medical history, Trial of Org 10,172 in Acute Stroke Treatment (TOAST), National Institute of Health Stroke Scale (NIHSS) and laboratory indicators at 24 h of admission data were collected. The Modified Rankine Scale (mRS) was used to assess the 3-mouth outcome of participants' prognosis. We constructed nine machine learning models based on 18 parameters and compared their accuracies for outcome variables. Results: Feature selection through the Least Absolute Shrinkage and Selection Operator cross-validation (Lasso CV) method identified the most critical predictors for early prognosis in AIS patients as white blood cell (WBC), homocysteine (HCY), D-Dimer, baseline NIHSS, fibrinogen degradation product (FDP), and glucose (GLU). Among the nine machine learning models evaluated, the Random Forest model exhibited superior performance in the test set, achieving an Area Under the Curve (AUC) of 0.852, an accuracy rate of 0.818, a sensitivity of 0.654, a specificity of 0.945, and a recall rate of 0.900. Conclusion: These findings indicate that RF models utilizing general clinical and laboratory data from the initial 24 h of admission can effectively predict the early prognosis of AIS patients.

12.
J Phys Chem A ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38917472

ABSTRACT

The identification of the non-noble metal constituted TaO cluster as a potential analogue to the noble metal Au is significant for the development of tailored materials. It leverages the superatom concept to engineer properties with precision. However, the impact of incrementally integrating TaO units on the electronic configurations and properties within larger TaO-based clusters remains to be elucidated. By employing the density functional theory calculations, the global minima and low-lying isomers of the TanOn (n = 2-5) clusters were determined, and their structural evolution was disclosed. In the cluster series, Ta5O5 was found to possess the highest electron affinity (EA) with a value of 2.14 eV, based on which a dual external field (DEF) strategy was applied to regulate the electronic property of the cluster. Initially, the electron-withdrawing CO ligand was affixed to Ta5O5, followed by the application of an oriented external electric field (OEEF). The CO ligation was found to be able to enhance the Ta5O5 cluster's electron capture capability by adjusting its electron energy levels, with the EA of Ta5O5(CO)4 peaking at 2.58 eV. Subsequently, the introduction of OEEF further elevated the EA of the CO-ligated cluster. Notably, OEEF, when applied along the +x axis, was observed to sharply increase the EA to 3.26 eV, meeting the criteria for superhalogens. The enhancement of EA in response to OEEF intensity can be quantified as a functional relationship. This finding highlights the advantage of OEEF over conventional methods, demonstrating its capacity for precise and continuous modulation of cluster EAs. Consequently, this research has adeptly transformed tantalum oxide clusters into superhalogen structures, underscoring the effectiveness of the DEF strategy in augmenting cluster EAs and its promise as a viable tool for the creation of superhalogens.

13.
Materials (Basel) ; 17(9)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38730890

ABSTRACT

A modified 3D re-entrant honeycomb is designed and fabricated utilizing Laser Cladding Deposition (LCD) technology, the mechanical properties of which are systematically investigated by experimental and finite element (FE) methods. Firstly, the influences of honeycomb angle on localized deformation and the response of force are studied by an experiment. Experimental results reveal that the honeycomb angles have a significant effect on deformation and force. Secondly, a series of numerical studies are conducted to analyze stress characteristics and energy absorption under different angles (α) and velocities (v). It is evident that two variables play an important role in stress and energy. Thirdly, response surface methodology (RSM) and the Non-Dominated Sorting Genetic Algorithm II (NSGA-II) are implemented with high precision to solve multi-objective optimization. Finally, the final compromise solution is determined based on the fitness function, with an angle of 49.23° and an impact velocity of 16.40 m/s. Through simulation verification, the errors of energy absorption (EA) and peak crush stress (PCS) are 9.26% and 0.4%, respectively. The findings of this study offer valuable design guidance for selecting the optimal design parameters under the same mass conditions to effectively enhance the performance of the honeycomb.

14.
Adv Sci (Weinh) ; : e2402287, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38711218

ABSTRACT

Human stem cells and derivatives transplantation are widely used to treat nervous system diseases, while the fate determination of transplanted cells is not well elucidated. To explore cell fate changes of human brain organoids before and after transplantation, human brain organoids are transplanted into prefrontal cortex (PFC) and hippocampus (HIP), respectively. Single-cell sequencing is then performed. According to time-series sample comparison, transplanted cells mainly undergo neural development at 2 months post-transplantation (MPT) and then glial development at 4MPT, respectively. A different brain region sample comparison shows that organoids grafted to PFC have obtained cell fate close to those of host cells in PFC, other than HIP, which may be regulated by the abundant expression of dopamine (DA) and acetylcholine (Ach) in PFC. Meanwhile, morphological complexity of human astrocyte grafts is greater in PFC than in HIP. DA and Ach both activate the calcium activity and increase morphological complexity of astrocytes in vitro. This study demonstrates that human brain organoids receive host niche factor regulation after transplantation, resulting in the alignment of grafted cell fate with implanted brain regions, which may contribute to a better understanding of cell transplantation and regenerative medicine.

15.
Front Bioeng Biotechnol ; 12: 1398189, 2024.
Article in English | MEDLINE | ID: mdl-38803847

ABSTRACT

Cytotoxicity assays are crucial for assessing the efficacy of drugs in killing cancer cells and determining their potential therapeutic value. Measurement of the effect of drug concentration, which is an influence factor on cytotoxicity, is of great importance. This paper proposes a cytotoxicity assay using microwave sensors in an end-point approach based on the detection of the number of live cells for the first time. In contrast to optical methods like fluorescent labeling, this research uses a resonator-type microwave biosensor to evaluate the effects of drug concentrations on cytotoxicity by monitoring electrical parameter changes due to varying cell densities. Initially, the feasibility of treating cells with ultrapure water for cell counting by a microwave biosensor is confirmed. Subsequently, inhibition curves generated by both the CCK-8 method and the new microwave biosensor for various drug concentrations were compared and found to be congruent. This agreement supports the potential of microwave-based methods to quantify cell growth inhibition by drug concentrations.

16.
Cancer Gene Ther ; 2024 May 28.
Article in English | MEDLINE | ID: mdl-38806621

ABSTRACT

Acute myeloid leukemia (AML) is a malignant clonal hematopoietic disease with a poor prognosis. Understanding the interaction between leukemic cells and the tumor microenvironment (TME) can help predict the prognosis of leukemia and guide its treatment. Re-analyzing the scRNA-seq data from the CSC and G20 cohorts, using a Python-based pipeline including machine-learning-based scVI-tools, recapitulated the distinct hierarchical structure within the samples of AML patients. Weighted correlation network analysis (WGCNA) was conducted to construct a weighted gene co-expression network and to identify gene modules primarily focusing on hematopoietic stem cells (HSCs), multipotent progenitors (MPPs), and natural killer (NK) cells. The analysis revealed significant deregulation in gene modules associated with aerobic respiration and ribosomal/cytoplasmic translation. Cell-cell communications were elucidated by the CellChat package, revealing an imbalance of activating and inhibitory immune signaling pathways. Interception of genes upregulated in leukemic HSCs & MPPs as well as in NKG2A-high NK cells was used to construct prognostic models. Normal Cox and artificial neural network models based on 10 genes were developed. The study reveals the deregulation of mitochondrial and ribosomal genes in AML patients and suggests the co-occurrence of stimulatory and inhibitory factors in the AML TME.

17.
Vet Res ; 55(1): 68, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38807225

ABSTRACT

Pseudorabies virus (PRV) is recognized as the aetiological agent responsible for Aujeszky's disease, or pseudorabies, in swine populations. Rab6, a member of the small GTPase family, is implicated in various membrane trafficking processes, particularly exocytosis regulation. Its involvement in PRV infection, however, has not been documented previously. In our study, we observed a significant increase in the Rab6 mRNA and protein levels in both PK-15 porcine kidney epithelial cells and porcine alveolar macrophages, as well as in the lungs and spleens of mice infected with PRV. The overexpression of wild-type Rab6 and its GTP-bound mutant facilitated PRV proliferation, whereas the GDP-bound mutant form of Rab6 had no effect on viral propagation. These findings indicated that the GTPase activity of Rab6 was crucial for the successful spread of PRV. Further investigations revealed that the reduction in Rab6 levels through knockdown significantly hampered PRV proliferation and disrupted virus assembly and egress. At the molecular level, Rab6 was found to interact with the PRV glycoproteins gB and gE, both of which are essential for viral assembly and egress. Our results collectively suggest that PRV exploits Rab6 to expedite its assembly and egress and identify Rab6 as a promising novel target for therapeutic treatment for PRV infection.


Subject(s)
Herpesvirus 1, Suid , Pseudorabies , Virus Release , rab GTP-Binding Proteins , Animals , Herpesvirus 1, Suid/physiology , Herpesvirus 1, Suid/genetics , Swine , rab GTP-Binding Proteins/metabolism , rab GTP-Binding Proteins/genetics , Mice , Pseudorabies/virology , Virus Assembly/physiology , Swine Diseases/virology , Cell Line
18.
Front Endocrinol (Lausanne) ; 15: 1356131, 2024.
Article in English | MEDLINE | ID: mdl-38711978

ABSTRACT

Objective: Diabetic nephropathy (DN) is a major microvascular complication of diabetes and the leading cause of end-stage renal disease. Early detection and prevention of DN are important. Retinol-binding protein 4 (RBP4) has been considered as a single diagnostic marker for the detection of renal impairment. However, the results have been inconsistent. The present meta-analysis aimed to determine the diagnostic potential of RBP4 in patients in type 2 diabetes mellitus (T2DM) with DN. Methods: We searched PubMed, Web of Science, Embase, Wanfang and CNKI databases from inception until January 2024. The meta-analysis was performed by Stata version 15.0, and sensitivity, specificity, positive and negative likelihood ratios (PLR and NLR), diagnostic odds ratio (DOR) and area under the curve (AUC) were pooled. The Quality Assessment of Diagnostic Accuracy Studies-2 tool was utilized to assess the quality of each included study. In addition, heterogeneity and publication bias were evaluated. Results: Twenty-nine studies were included in the meta-analysis. The pooled sensitivity and specificity were 0.76 [95% confidence interval (CI), 0.71-0.80] and 0.81 (95% CI, 0.76-0.85), respectively. The results showed a pooled PLR of 4.06 (95% CI, 3.16-5.21), NLR of 0.29 (95% CI, 0.24-0.36) and DOR of 13.76 (95% CI, 9.29-20.37). The area under the summarized receiver operating characteristic curve was given a value of 0.85 (95% CI, 0.82-0.88). No obvious publication bias existed in the Deeks' funnel plot asymmetry test. Conclusion: Our findings suggest that RBP4 has a promising diagnostic value with good sensitivity and specificity for patients with T2DM with DN.


Subject(s)
Diabetic Nephropathies , Retinol-Binding Proteins, Plasma , Humans , Diabetic Nephropathies/diagnosis , Retinol-Binding Proteins, Plasma/metabolism , Retinol-Binding Proteins, Plasma/analysis , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/diagnosis , Biomarkers/blood , Sensitivity and Specificity
19.
Int J Ophthalmol ; 17(5): 883-895, 2024.
Article in English | MEDLINE | ID: mdl-38766339

ABSTRACT

AIM: To explore the correlation of gut microbiota and the metabolites with the progression of diabetic retinopathy (DR) and provide a novel strategy to elucidate the pathological mechanism of DR. METHODS: The fecal samples from 32 type 2 diabetes patients with proliferative retinopathy (PDR), 23 with non-proliferative retinopathy (NPDR), 27 without retinopathy (DM), and 29 from the sex-, age- and BMI- matched healthy controls (29 HC) were analyzed by 16S rDNA gene sequencing. Sixty fecal samples from PDR, DM, and HC groups were assayed by untargeted metabolomics. Fecal metabolites were measured using liquid chromatography-mass spectrometry (LC-MS) analysis. Associations between gut microbiota and fecal metabolites were analyzed. RESULTS: A cluster of 2 microbiome and 12 metabolites accompanied with the severity of DR, and the close correlation of the disease progression with PDR-related microbiome and metabolites were found. To be specific, the structure of gut microbiota differed in four groups. Diversity and richness of gut microbiota were significantly lower in PDR and NPDR groups, than those in DM and HC groups. A cluster of microbiome enriched in PDR group, including Pseudomonas, Ruminococcaceae-UCG-002, Ruminococcaceae-UCG-005, Christensenellaceae-R-7, was observed. Functional analysis showed that the glucose and nicotinate degradations were significantly higher in PDR group than those in HC group. Arginine, serine, ornithine, and arachidonic acid were significantly enriched in PDR group, while proline was enriched in HC group. Functional analysis illustrated that arginine biosynthesis, lysine degradation, histidine catabolism, central carbon catabolism in cancer, D-arginine and D-ornithine catabolism were elevated in PDR group. Correlation analysis revealed that Ruminococcaceae-UCG-002 and Christensenellaceae-R-7 were positively associated with L-arginine, ornithine levels in fecal samples. CONCLUSION: This study elaborates the different microbiota structure in the gut from four groups. The relative abundance of Ruminococcaceae-UCG-002 and Parabacteroides are associated with the severity of DR. Amino acid and fatty acid catabolism is especially disordered in PDR group. This may help provide a novel diagnostic parameter for DR, especially PDR.

20.
Article in English | MEDLINE | ID: mdl-38780349

ABSTRACT

In recent years, gut microbiota has become a hot topic in the fields of medicine and life sciences. Short-chain fatty acids (SCFAs), the main metabolites of gut microbiota produced by microbial fermentation of dietary fiber, play a vital role in healthy and ill hosts. SCFAs regulate the process of metabolism, immune, and inflammation and have therapeutic effects on gastrointestinal and neurological disorders, as well as antitumor properties. This review summarized the production, distribution, and molecular mechanism of SCFAs, as well as their mechanisms of action in healthy and ill hosts. In addition, we also emphasized the negative effects of SCFAs, aiming to provide the public with a more comprehensive understanding of SCFAs.

SELECTION OF CITATIONS
SEARCH DETAIL
...