Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 52
Filter
1.
Oral Oncol ; 158: 106980, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39151333

ABSTRACT

OBJECTIVE: The early response to concurrent chemoradiotherapy in patients with locally advanced nasopharyngeal carcinoma (LA-NPC) is closely correlated with prognosis. In this study, we aimed to predict early response using a combined model that combines sub-regional radiomics features from multi-sequence MRI with clinically relevant factors. METHODS: A total of 104 patients with LA-NPC were randomly divided into training and test cohorts at a ratio of 3:1. Radiomic features were extracted from subregions within the tumor area using the K-means clustering method, and feature selection was performed using LASSO regression. Four models were established: a radiomics model, a clinical model, an Intratumor Heterogeneity (ITH) score-based model and a combined model that integrates the ITH score with clinical factors. The predictive performance of these models was evaluated using receiver operating characteristic (ROC) curves, calibration curves, and decision curve analysis (DCA). RESULTS: Among the models, the combined model incorporating the ITH score and clinical factors exhibited the highest predictive performance in the test cohort (AUC=0.838). Additionally, the models based on ITH score showed superior prognostic value in both the training cohort (AUC=0.888) and the test cohort (AUC=0.833). CONCLUSION: The combined model that integrates the ITH score with clinical factors exhibited superior performance in predicting early response following concurrent chemoradiotherapy in patients with LA-NPC.

2.
Hortic Res ; 11(8): uhae163, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39108588

ABSTRACT

Cucumber (Cucumis sativus L.) is a widely cultivated crop with rich germplasm resources, holding significant nutritional value. It also serves as an important model for studying epidermal cell fate and sex determination. Cucumbers are covered with multicellular and unbranched trichomes, including a specific type called spines found on the surface of the fruit. The presence and density of these fruit spines determine the visual quality of cucumber fruits. However, the key regulatory genes and mechanisms underlying cucumber fruit spine development remain poorly understood. In this study, we identified a WUSCHEL-related homeobox (WOX) family gene CsWOX3, which functioned as a typical transcriptional repressor and played a negative role in fruit spine development. Spatial-temporal expression analysis revealed that CsWOX3 exhibited a relatively high expression level in the cucumber female floral organs, particularly in the fruit exocarp. Knockout of CsWOX3 using CRISPR/Cas9 resulted in a significant 2-to-3-fold increase in the diameter of fruit spines base, while overexpression led to a 17% decrease in the diameter compared to the wild-type. A SQUAMOSA PROMOTER BINDING PROTEIN-LIKE transcription factor CsSPL15 could directly bind and activate the expression of CsWOX3, thereby suppressing the expression of downstream auxin-related genes, such as CsARF18. Additionally, the RING-finger type E3 ubiquitin ligase CsMIEL1-like interacted with the HD domain of CsWOX3, which might result in the ubiquitination and subsequent alteration in protein stability of CsWOX3. Collectively, our study uncovered a WOX transcription factor CsWOX3 and elucidated its expression pattern and biological function. This discovery enhances our comprehension of the molecular mechanism governing cucumber fruit spine morphogenesis.

3.
Oral Oncol ; 154: 106865, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823173

ABSTRACT

OBJECTIVE: The aim of this study is to evaluate the efficacy and cost-effectiveness of various induction chemotherapy (IC) regimens as first-line treatment for Locoregionally advanced nasopharyngeal carcinoma (LA-NPC), aiming to provide clinicians and patients with informed insights to aid in treatment decision-making. PATIENTS AND METHODS: We conducted a network meta-analysis (NMA) and cost-effectiveness analysis (CEA) based on data from 10 clinical trials investigating IC regimens for the treatment of LA-NPC. A Bayesian NMA was performed, with the primary outcomes being hazard ratios (HRs) for disease-free survival (DFS) and overall survival (OS). To model the disease progression of LA-NPC, we developed a dynamic partitioned survival model consisting of three disease states: progression-free survival (PFS), progression disease (PD), and death. The model was run on a 3-week cycle for a research period of 10 years, with quality-adjusted life-years (QALYs) and incremental cost-effectiveness ratios (ICERs) serving as outcome measures. RESULTS: According to the surface under the cumulative ranking curve (SUCRA) estimates derived from the NMA, TPC and TP, as IC regimens, appear to exhibit superior efficacy compared to other treatment modalities. In terms of CEA, concurrent chemoradiotherapy (CCRT), TPF + CCRT, and GP + CCRT were found to be dominated (more costs and less QALYs). Comparatively, TPC + CCRT emerged as a cost-effective option with an ICER of $1260.57/QALY when compared to PF + CCRT. However, TP + CCRT demonstrated even greater cost-effectiveness than TPC + CCRT, with an associated increase in costs of $3300.83 and an increment of 0.1578 QALYs per patient compared to TPC + CCRT, resulting in an ICER of $20917.62/QALY. CONCLUSION: Based on considerations of efficacy and cost-effectiveness, the TP + CCRT treatment regimen may emerge as the most favorable first-line therapeutic approach for patients with LA-NPC.


Subject(s)
Cost-Benefit Analysis , Induction Chemotherapy , Nasopharyngeal Carcinoma , Nasopharyngeal Neoplasms , Network Meta-Analysis , Humans , Nasopharyngeal Carcinoma/drug therapy , Nasopharyngeal Carcinoma/economics , Nasopharyngeal Carcinoma/mortality , Induction Chemotherapy/economics , Induction Chemotherapy/methods , Nasopharyngeal Neoplasms/drug therapy , Nasopharyngeal Neoplasms/economics , Quality-Adjusted Life Years , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/economics , Cost-Effectiveness Analysis
4.
Cancer Control ; 31: 10732748241255535, 2024.
Article in English | MEDLINE | ID: mdl-38773761

ABSTRACT

The current standard treatment for locally advanced squamous cell carcinoma of the head and neck (LASCCHN) comprises concurrent radiotherapy (CRT) alongside platinum-based chemotherapy. However, innovative therapeutic alternatives are being evaluated in phase II/III randomized trials. This study employed a Bayesian network meta-analysis (NMA) using fixed effects to provide both direct and indirect comparisons of all existing treatment modalities for unresectable LASCCHN. METHODS: We referenced randomized controlled trials (RCTs) from January 2000 to July 2023 by extensively reviewing PubMed, EMBASE, and Web of Science databases, adhering to the Cochrane methodology. Relevant data, including summary estimates of overall survival (OS) and progression-free survival (PFS), were extracted from these selected studies and recorded in a predefined database sheet. Subsequently, we conducted a random effects network meta-analysis using a Bayesian framework. RESULTS: Based on the Surface Under the Cumulative Ranking (SUCRA) values, the league table organizes the various treatments for OS in the following order: IC + RT&MTT, MTT-CRT, IC + CRT&MTT, CRT, IC + CRT, MTT-RT, IC + MTT-RT, and RT. In a similar order, the treatments rank as follows according to the league table: IC + CRT&MTT, MTT-CRT, IC + CRT, IC + RT&MTT, CRT, IC + MTT-RT, MTT-RT, and RT. Notably, none of these treatments showed significant advantages over concurrent chemoradiotherapy. CONCLUSION: Despite concurrent chemoradiotherapy being the prevailing treatment for LASCCHN, our findings suggest the potential for improved outcomes when concurrent chemoradiotherapy is combined with targeted therapy or induction chemotherapy.


The current standard treatment for advanced head and neck cancer involves combining radiation therapy with chemotherapy. However, there are ongoing trials exploring alternative therapies. In this study, we conducted a comprehensive analysis of existing treatments using a statistical method called network meta-analysis. Our analysis included data from randomized controlled trials published between January 2000 and July 2023. We focused on overall survival and progression-free survival as key outcome measures. The results of our analysis showed that none of the alternative treatments demonstrated significant advantages over the standard concurrent chemoradiotherapy. Nevertheless, there is potential for improved outcomes when targeted therapy or induction chemotherapy is combined with concurrent chemoradiotherapy.


Subject(s)
Head and Neck Neoplasms , Network Meta-Analysis , Squamous Cell Carcinoma of Head and Neck , Humans , Squamous Cell Carcinoma of Head and Neck/therapy , Squamous Cell Carcinoma of Head and Neck/mortality , Squamous Cell Carcinoma of Head and Neck/pathology , Head and Neck Neoplasms/therapy , Head and Neck Neoplasms/mortality , Head and Neck Neoplasms/pathology , Chemoradiotherapy/methods , Bayes Theorem , Randomized Controlled Trials as Topic , Antineoplastic Combined Chemotherapy Protocols/therapeutic use
5.
Int J Mol Sci ; 25(8)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38673993

ABSTRACT

Cucumber (Cucumis sativus L.) is a globally prevalent and extensively cultivated vegetable whose yield is significantly influenced by various abiotic stresses, including drought, heat, and salinity. Transcription factors, such as zinc finger-homeodomain proteins (ZHDs), a plant-specific subgroup of Homeobox, play a crucial regulatory role in stress resistance. In this study, we identified 13 CsZHDs distributed across all six cucumber chromosomes except chromosome 7. Phylogenetic analysis classified these genes into five clades (ZHDI-IV and MIF) with different gene structures but similar conserved motifs. Collinearity analysis revealed that members of clades ZHD III, IV, and MIF experienced amplification through segmental duplication events. Additionally, a closer evolutionary relationship was observed between the ZHDs in Cucumis sativus (C. sativus) and Arabidopsis thaliana (A. thaliana) compared to Oryza sativa (O. sativa). Quantitative real-time PCR (qRT-PCR) analysis demonstrated the general expression of CsZHD genes across all tissues, with notable expression in leaf and flower buds. Moreover, most of the CsZHDs, particularly CsZHD9-11, exhibited varying responses to drought, heat, and salt stresses. Virus-induced gene silencing (VIGS) experiments highlighted the potential functions of CsZHD9 and CsZHD10, suggesting their positive regulation of stomatal movement and responsiveness to drought stress. In summary, these findings provide a valuable resource for future analysis of potential mechanisms underlying CsZHD genes in response to stresses.


Subject(s)
Cucumis sativus , Evolution, Molecular , Gene Expression Regulation, Plant , Phylogeny , Plant Proteins , Stress, Physiological , Cucumis sativus/genetics , Cucumis sativus/metabolism , Stress, Physiological/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Zinc Fingers/genetics , Droughts , Chromosomes, Plant/genetics , Gene Expression Profiling
6.
Sci Rep ; 14(1): 4038, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38369561

ABSTRACT

Due to the harsh operating environment and ultralong operating hours of wireless sensor networks (WSNs), node failures are inevitable. Ensuring the reliability of the data collected by the WSN necessitates the utmost importance of diagnosing faults in nodes within the WSN. Typically, the initial step in the fault diagnosis of WSN nodes involves extracting numerical features from neighboring nodes. A solitary data feature is often assigned a high weight, resulting in the failure to effectively distinguish between all types of faults. Therefore, this study introduces an enhanced variant of the traditional belief rule base (BRB), called the belief rule base with adaptive attribute weights (BRB-AAW). First, the data features are extracted as input attributes for the model. Second, a fault diagnosis model for WSN nodes, incorporating BRB-AAW, is established by integrating parameters initialized by expert knowledge with the extracted data features. Third, to optimize the model's initial parameters, the projection covariance matrix adaptive evolution strategy (P-CMA-ES) algorithm is employed. Finally, a comprehensive case study is designed to verify the accuracy and effectiveness of the proposed method. The results of the case study indicate that compared with the traditional BRB method, the accuracy of the proposed model in WSN node fault diagnosis is significantly improved.

7.
Bioinformatics ; 40(2)2024 02 01.
Article in English | MEDLINE | ID: mdl-38305405

ABSTRACT

MOTIVATION: Effective drug delivery systems are paramount in enhancing pharmaceutical outcomes, particularly through the use of cell-penetrating peptides (CPPs). These peptides are gaining prominence due to their ability to penetrate eukaryotic cells efficiently without inflicting significant damage to the cellular membrane, thereby ensuring optimal drug delivery. However, the identification and characterization of CPPs remain a challenge due to the laborious and time-consuming nature of conventional methods, despite advances in proteomics. Current computational models, however, are predominantly tailored for balanced datasets, an approach that falls short in real-world applications characterized by a scarcity of known positive CPP instances. RESULTS: To navigate this shortfall, we introduce PractiCPP, a novel deep-learning framework tailored for CPP prediction in highly imbalanced data scenarios. Uniquely designed with the integration of hard negative sampling and a sophisticated feature extraction and prediction module, PractiCPP facilitates an intricate understanding and learning from imbalanced data. Our extensive computational validations highlight PractiCPP's exceptional ability to outperform existing state-of-the-art methods, demonstrating remarkable accuracy, even in datasets with an extreme positive-to-negative ratio of 1:1000. Furthermore, through methodical embedding visualizations, we have established that models trained on balanced datasets are not conducive to practical, large-scale CPP identification, as they do not accurately reflect real-world complexities. In summary, PractiCPP potentially offers new perspectives in CPP prediction methodologies. Its design and validation, informed by real-world dataset constraints, suggest its utility as a valuable tool in supporting the acceleration of drug delivery advancements. AVAILABILITY AND IMPLEMENTATION: The source code of PractiCPP is available on Figshare at https://doi.org/10.6084/m9.figshare.25053878.v1.


Subject(s)
Cell-Penetrating Peptides , Deep Learning , Cell-Penetrating Peptides/chemistry , Software , Eukaryotic Cells , Drug Delivery Systems/methods
8.
Adv Mater ; 36(15): e2307454, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38299428

ABSTRACT

The dismal prognosis for glioblastoma multiform (GBM) patients is primarily attributed to the highly invasive tumor residual that remained after surgical intervention. The development of precise intraoperative imaging and postoperative residual removal techniques will facilitate the gross total elimination of GBM. Here, a self-disassembling porphyrin lipoprotein-coated calcium peroxide nanoparticles (PLCNP) is developed to target GBM via macropinocytosis, allowing for fluorescence-guided surgery of GBM and improving photodynamic treatment (PDT) of GBM residual by alleviating hypoxia. By reducing self-quenching and enhancing lysosome escape efficiency, the incorporation of calcium peroxide (CaO2) cores in PLCNP amplifies the fluorescence intensity of porphyrin-lipid. Furthermore, the CaO2 core has diminished tumor hypoxia and improves the PDT efficacy of PLCNP, enabling low-dose PDT and reversing tumor progression induced by hypoxia aggravation following PDT. Taken together, this self-disassembling and oxygen-generating porphyrin-lipoprotein nanoparticle may serve as a promising all-in-one nanotheranostic platform for guiding precise GBM excision and empowering post-operative PDT, providing a clinically applicable strategy to combat GBM in a safe and effective manner.


Subject(s)
Glioblastoma , Nanoparticles , Peroxides , Photochemotherapy , Porphyrins , Humans , Porphyrins/therapeutic use , Glioblastoma/drug therapy , Glioblastoma/surgery , Oxygen/metabolism , Photochemotherapy/methods , Hypoxia , Nanoparticles/therapeutic use , Cell Line, Tumor , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use
10.
Biomed J ; 47(1): 100592, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37004870

ABSTRACT

BACKGROUND: To overcome the drawbacks of traditional therapy for corneal neovascularization (CNV), we evaluated the efficacy of polyethylene glycol (PEG)-conjugated Ala-Pro-Arg-Pro-Gly (APRPG) peptide modified dexamethasone (Dex), a novel nano-prodrug (Dex-PEG-APRPG, DPA). METHODS: Characterization of DPA nano-prodrug were measured with transmission electron microscopy (TEM) and dynamic light scattering (DLS) analyses. Cytotoxicity and effects on cell migration and tube formation of DPA were evaluated in vitro. A murine CNV model was established by cornea alkali burn. The injured corneas were given eye drops of DPA (0.2 mM), Dex solution (0.2 mM), Dexp (2 mM), or normal saline three times a day. After two weeks, eyes were obtained for the analysis of histopathology, immunostaining, and mRNA expression. RESULTS: DPA with an average diameter of 30 nm, presented little cytotoxicity and had good ocular biocompatibility. More importantly, DPA showed specific targeting to vascular endothelial cells with efficient inhibition on cell migration and tube formation. In a mouse CNV model, clinical, histological, and immunohistochemical examination results revealed DPA had a much stronger angiogenesis suppression than Dex, resembling a clinical drug with an order of magnitude higher concentration. This was ascribed to the significant downregulations in the expression of pro-angiogenic and pro-inflammatory factors in the corneas. In vivo imaging results also demonstrated that APRPG could prolong ocular retention time. CONCLUSIONS: This study suggests that DPA nano-prodrug occupies advantages of specific targeting ability and improved bioavailability over conventional therapy, and holds great potential for safe and efficient CNV therapy.


Subject(s)
Corneal Neovascularization , Prodrugs , Mice , Animals , Corneal Neovascularization/drug therapy , Prodrugs/therapeutic use , Endothelial Cells , Polyethylene Glycols/pharmacology , Polyethylene Glycols/chemistry , Polyethylene Glycols/therapeutic use , Dexamethasone/pharmacology , Dexamethasone/therapeutic use , Neovascularization, Pathologic/drug therapy
11.
Biol Trace Elem Res ; 2023 Nov 24.
Article in English | MEDLINE | ID: mdl-37996719

ABSTRACT

Selenium (Se) is an essential trace element for maintaining human health, for example, plays a crucial role in preventing aging-related diseases. However, most studies on the health effects of Se among the community middle-aged and elderly have been observational or the health indices were single, and the related study among the Chinese population is limited. Additionally, China is recognized as among the countries facing a significant deficiency in Se, and Se contents in the human body may decrease with age. Therefore, a two-step study was conducted to explore the health effects of Se exposure and supplementation among such populations in China. Firstly, a retrospective cohort study was conducted to compare the health outcomes between such populations residing in Se-rich regions and non-Se-rich regions, involving a total of 102 subjects, with 51 residing in Se-rich regions and 51 in non-Se-rich regions. The hair-Se (H-Se) contents, serum-Se (S-Se) contents, and total cholesterol of subjects from Se-rich regions were significantly higher than their counterparts. Notably, significant positive associations were observed between S-Se and lipids. Secondly, a before-after self-control Se supplementation study among subjects residing in non-Se-rich regions was conducted. A total of 40 subjects administered Se tablets orally for 30 days, with Se of 120 µg/day. The results showed significant increases in H-Se and S-Se. Se supplementation also exhibited positive effects on alanine aminotransferase, homocysteine, and fasting glucose; however, high-density lipoprotein cholesterol significantly decreased. Overall, the community middle-aged and elderly residing in Se-rich regions or receiving quantitative Se supplementation could effectively improve Se contents in bodies and certain health indices, excluding lipids. These improvements encompass liver function, cardiovascular health, and glucose metabolism. These findings enhance our understanding of how Se impacts the health of the middle-aged and elderly, emphasizing the significance of targeted interventions for such populations in non-Se-rich regions. Trial registration: ChiCTR2000040987 ( https://www.chictr.org.cn ).

12.
J Muscle Res Cell Motil ; 44(4): 311-323, 2023 12.
Article in English | MEDLINE | ID: mdl-37889396

ABSTRACT

This study aimed to explore the occurrence of necroptosis in skeletal muscle after eccentric exercise and investigate the role and possible mechanisms of ZBP1 and its related pathway proteins in the process, providing a theoretical basis for the study of exercise-induced skeletal muscle injury and recovery. Forty-eight male adult Sprague-Dawley rats were randomly divided into a control group (C, n = 8) and an exercise group (E, n = 40). The exercise group was further divided into 0 h (E0), 12 h (E12), 24 h (E24), 48 h (E48), and 72 h (E72) after exercise, with 8 rats in each subgroup. At each time point, gastrocnemius muscle was collected under general anesthesia. The expression levels of ZBP1 and its related pathway proteins were assessed using Western blot analysis. The colocalization of pathway proteins was examined using immunofluorescence staining. After 48 h of eccentric exercise, the expression of necroptosis marker protein MLKL reached its peak (P < 0.01), and the protein levels of ZBP1, RIPK3, and HMGB1 also peaked (P < 0.01). At 48 h post high-load eccentric exercise, there was a significant increase in colocalization of ZBP1/RIPK3 pathway proteins, reaching a peak (P < 0.01). (1) Eccentric exercise induced necroptosis in skeletal muscle, with MLKL, p-MLKLS358, and HMGB1 significantly elevated, especially at 48 h after exercise. (2) After eccentric exercise, the ZBP1/RIPK3-related pathway proteins ZBP1, RIPK3, and p-RIPK3S232 were significantly elevated, particularly at 48 h after exercise. (3) Following high-load eccentric exercise, there was a significant increase in the colocalization of ZBP1/RIPK3 pathway proteins, with a particularly pronounced elevation observed at 48 h post-exercise.


Subject(s)
HMGB1 Protein , Protein Kinases , Animals , Male , Rats , Muscle, Skeletal/metabolism , Necroptosis , Protein Kinases/metabolism , Rats, Sprague-Dawley
13.
Front Med (Lausanne) ; 10: 1230844, 2023.
Article in English | MEDLINE | ID: mdl-37901402

ABSTRACT

Background: Owing to advances in diagnostic technology, the diagnosis of T1 colorectal cancers (CRCs) continues to increase. However, the optimal management of T1 CRCs in the Western Hemisphere remains unclear due to limited population-based data directly comparing the efficacy of endoscopic therapy (ET) and surgical resection (SR). The purpose of this study was to report outcome data from a large Western cohort of patients who underwent ET or SR for early CRCs. Methods: The SEER-18 database was used to identify patients with T1 CRCs diagnosed from 2004 to 2018 treated with ET or SR. Multivariable logistic regression models were employed to identify variables related to lymph node metastasis (LNM). Rates of ET and 1-year relative survival were calculated for each year. Effect of ET or SR on overall survival and cancer-specific survival was compared using Kaplan-Meier method stratified by tumor size and site. Results: A total of 28,430 T1 CRCs patients were identified from 2004 to 2018 in US, with 22.7% undergoing ET and 77.3% undergoing SR. The incidence of T1 CRCs was 6.15 per 100,000 person-years, with male patients having a higher incidence. Left-sided colon was the most frequent location of tumors. The utilization of ET increased significantly from 2004 to 2018, with no significant change in 1-year relative survival rate. Predictors of LNM were age at diagnosis, sex, race, tumor size, histology, grade, and location. The 5-year relative survival rates were 91.4 and 95.4% for ET and SR, respectively. Subgroup analysis showed that OS and CSS were similar between ET and SR in T1N0M0 left-sided colon cancers with tumors 2 cm or less and in rectal cancers with tumors 1 cm or less. Conclusion: Our study showed that ET was feasible and safe for patients with left-sided T1N0M0 colon cancers and tumors of 2 cm or less, as well as T1N0M0 rectal cancers and tumors of 1 cm or less. Therefore, the over- and under-use of ET should be avoided by carefully selecting patients based on tumor size and site.

14.
Acta Pharm Sin B ; 13(8): 3454-3470, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37655319

ABSTRACT

Despite growing prevalence and incidence, the management of gout remains suboptimal. The intermittent nature of the gout makes the long-term urate-lowering therapy (ULT) particularly important for gout management. However, patients are reluctant to take medication day after day to manage incurable occasional gout flares, and suffer from possible long-term toxicity. Therefore, a safe and easy-to-operate drug delivery system with simple preparation for the long-term management of gout is very necessary. Here, a chitosan-containing sustained-release microneedle system co-loaded with colchicine and uricase liposomes were fabricated to achieve this goal. This microneedle system was confirmed to successfully deliver the drug to the skin and maintain a one-week drug retention. Furthermore, its powerful therapeutic potency to manage gout was investigated in both acute gouty and chronic gouty models. Besides, the drug co-delivery system could help avoid long-term daily oral colchicine, a drug with a narrow therapeutic index. This system also avoids mass injection of uricase by improving its stability, enhancing the clinical application value of uricase. In general, this two-drug system reduces the dosage of uricase and colchicine and improves the patient's compliance, which has a strong clinical translation.

15.
Neural Netw ; 166: 670-682, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37604076

ABSTRACT

Associative system has attracted increasing attention for it can store basic information and then infer details to match perception with an efficient self-organization algorithm. However, the implementation of the associative system with the application of real-world data is relatively difficult. To address this issue, we propose a novel biologically inspired auto-associative (BIAA) network to explore the structure, encoding and formation of associative memory as well as to extend the ability to real-world application. Our network is constructed by imitating the organization of the cortical minicolumns where each minicolumn contains plenty of parallel biological spiking neurons. To allow the network to learn and predict one symbol per theta cycle, we incorporate synaptic delay and theta oscillation into the neuron dynamic process. Subsequently, we design a sparse temporal population (STP) coding scheme that allows each input symbol to be represented as stable, unique, and easily recallable sparsely distributed representations. By combining associative learning dynamics with the STP coding, our network realizes efficient storage and inference in an ordered manner. Experimental results indicate that the proposed network successfully performs sequence retrieval from partial text and sequence recovery from distorted information. BIAA network provides new insight into introducing biologically inspired mechanisms into associative system and has enormous potential for hardware and software applications.


Subject(s)
Algorithms , Learning , Neurons , Software
16.
Front Oncol ; 13: 1199426, 2023.
Article in English | MEDLINE | ID: mdl-37538109

ABSTRACT

Purpose: This study aimed to investigate the value of quantified extracellular volume fraction (fECV) derived from dual-energy CT (DECT) for predicting the survival outcomes of patients with hepatocellular carcinoma (HCC) after transarterial chemoembolization (TACE). Materials and methods: A total of 63 patients with HCC who underwent DECT before treatment were retrospectively included. Virtual monochromatic images (VMI) (70 keV) and iodine density images (IDI) during the equilibrium phase (EP) were generated. The tumor VMI-fECV and IDI-fECV were measured and calculated on the whole tumor (Whole) and maximum enhancement of the tumor (Maximum), respectively. Univariate and multivariate Cox models were used to evaluate the effects of clinical and imaging predictors on overall survival (OS) and progression-free survival (PFS). Results: The correlation between tumor VMI-fECV and IDI-fECV was strong (both p< 0.001). The Bland-Altman plot between VMI-fECV and IDI-fECV showed a bias of 5.16% for the Whole and 6.89% for the Maximum modalities, respectively. Increasing tumor VMI-fECV and IDI-fECV were positively related to the effects on OS and PFS (both p< 0.05). The tumor IDI-fECV-Maximum was the only congruent independent predictor in patients with HCC after TACE in the multivariate analysis on OS (p = 0.000) and PFS (p = 0.028). Patients with higher IDI-fECV-Maximum values had better survival rates above the optimal cutoff values, which were 35.42% for OS and 29.37% for PFS. Conclusion: The quantified fECV determined by the equilibrium-phase contrast-enhanced DECT can potentially predict the survival outcomes of patients with HCC following TACE treatment.

17.
J Colloid Interface Sci ; 650(Pt B): 1907-1917, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37517190

ABSTRACT

Currently, clinical tumor resection is faced with two options: open and minimally invasive surgery. Open surgery is easy to completely remove the lesion but is prone to infection, while minimally invasive surgery recovers faster but may cause tumor recurrence. To fill the shortcomings of the two surgical modes and make the choice for tumor resection more effortlessly, we developed a postoperative black phosphorus-Ag nanocomposites-loaded dopamine-modified hyaluronic acid-Pluronic® F127 (BP-Ag@HA-DA-Plu) hydrogel implantation system that can prevent tumor recurrence and wound infection simultaneously. Experiments have shown that the hydrogel system combined with 808 nm near-infrared (NIR) irradiation has excellent anti-tumor, antibacterial, and wound healing abilities. Additionally, unlike existing surgical hydrogel products that require inconvenient in-situ cross-linking, the BP-Ag@HA-DA-Plu hydrogel system offers "plug-and-play" functionality during surgery due to its thermo-responsiveness, injectability, and adhesion, thereby greatly improving the efficiency of surgery.


Subject(s)
Hydrogels , Wound Infection , Humans , Hydrogels/pharmacology , Neoplasm Recurrence, Local , Hyaluronic Acid/pharmacology , Wound Infection/pathology , Anti-Bacterial Agents/pharmacology
18.
Front Neurosci ; 17: 1167134, 2023.
Article in English | MEDLINE | ID: mdl-37389360

ABSTRACT

In the real world, information is often correlated with each other in the time domain. Whether it can effectively make a decision according to the global information is the key indicator of information processing ability. Due to the discrete characteristics of spike trains and unique temporal dynamics, spiking neural networks (SNNs) show great potential in applications in ultra-low-power platforms and various temporal-related real-life tasks. However, the current SNNs can only focus on the information a short time before the current moment, its sensitivity in the time domain is limited. This problem affects the processing ability of SNN in different kinds of data, including static data and time-variant data, and reduces the application scenarios and scalability of SNN. In this work, we analyze the impact of such information loss and then integrate SNN with working memory inspired by recent neuroscience research. Specifically, we propose Spiking Neural Networks with Working Memory (SNNWM) to handle input spike trains segment by segment. On the one hand, this model can effectively increase SNN's ability to obtain global information. On the other hand, it can effectively reduce the information redundancy between adjacent time steps. Then, we provide simple methods to implement the proposed network architecture from the perspectives of biological plausibility and neuromorphic hardware friendly. Finally, we test the proposed method on static and sequential data sets, and the experimental results show that the proposed model can better process the whole spike train, and achieve state-of-the-art results in short time steps. This work investigates the contribution of introducing biologically inspired mechanisms, e.g., working memory, and multiple delayed synapses to SNNs, and provides a new perspective to design future SNNs.

19.
Int J Mol Sci ; 24(7)2023 Mar 29.
Article in English | MEDLINE | ID: mdl-37047408

ABSTRACT

Glandular trichomes (GTs), specialized structures formed by the differentiation of plant epidermal cells, are known to play important roles in the resistance of plants to external biotic and abiotic stresses. These structures are capable of storing and secreting secondary metabolites, which often have important agricultural and medicinal values. In order to better understand the molecular developmental mechanisms of GTs, studies have been conducted in a variety of crops, including tomato (Solanum lycopersicum), sweetworm (Artemisia annua), and cotton (Gossypium hirsutum). The MYC transcription factor of the basic helix-loop-helix (bHLH) transcription factor family has been found to play an important role in GT development. In this study, a total of 13 cucumber MYC transcription factors were identified in the cucumber (Cucumis sativus L.) genome. After performing phylogenetic analyses and conserved motifs on the 13 CsMYCs in comparison to previously reported MYC transcription factors that regulate trichome development, seven candidate MYC transcription factors were selected. Through virus-induced gene silencing (VIGS), CsMYC2 is found to negatively regulate GT formation while CsMYC4, CsMYC5, CsMYC6, CsMYC7, and CsMYC8 are found to positively regulate GT formation. Furthermore, the two master effector genes, CsMYC2 and CsMYC7, are observed to have similar expression patterns indicating that they co-regulate the balance of GT development in an antagonistic way.


Subject(s)
Cucumis sativus , Trichomes , Trichomes/genetics , Trichomes/metabolism , Cucumis sativus/metabolism , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Gossypium/genetics , Gene Expression Regulation, Plant
20.
Plant Physiol ; 192(4): 2723-2736, 2023 08 03.
Article in English | MEDLINE | ID: mdl-37099480

ABSTRACT

Glandular trichomes (GTs) are outgrowths of plant epidermal cells that secrete and store specialized secondary metabolites that protect plants against biotic and abiotic stresses and have economic importance for human use. While extensive work has been done to understand the molecular mechanisms of trichome organogenesis in Arabidopsis (Arabidopsis thaliana), which forms unicellular, nonglandular trichomes (NGTs), little is known about the mechanisms of GT development or regulation of secondary metabolites in plants with multicellular GTs. Here, we identified and functionally characterized genes associated with GT organogenesis and secondary metabolism in GTs of cucumber (Cucumis sativus). We developed a method for effective separation and isolation of cucumber GTs and NGTs. Transcriptomic and metabolomic analyses showed that flavonoid accumulation in cucumber GTs is positively associated with increased expression of related biosynthesis genes. We identified 67 GT development-related genes, the functions of 7 of which were validated by virus-induced gene silencing. We further validated the role of cucumber ECERIFERUM1 (CsCER1) in GT organogenesis by overexpression and RNA interference transgenic approaches. We further show that the transcription factor TINY BRANCHED HAIR (CsTBH) serves as a central regulator of flavonoid biosynthesis in cucumber GTs. Work from this study provides insight into the development of secondary metabolite biosynthesis in multicellular GTs.


Subject(s)
Arabidopsis , Cucumis sativus , Humans , Cucumis sativus/metabolism , Trichomes/metabolism , Gene Expression Profiling , Plants/genetics , Arabidopsis/genetics , Flavonoids/genetics , Flavonoids/metabolism , Gene Expression Regulation, Plant
SELECTION OF CITATIONS
SEARCH DETAIL