Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Lab Chip ; 24(13): 3276-3283, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38847088

ABSTRACT

Lipid nanoparticles often contain a phosphatidylcholine with a long chain fatty acid, 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC). However, their preparation often encounters difficulties such as the inability to yield <20 nm nanoparticles due to the aggregation-prone behavior of DSPC. High-density lipoproteins (HDLs) are ∼10 nm protein-bound lipid nanoparticles in our body, and microfluidic preparations of HDL-mimicking nanoparticles (µHDL) have been reported. Herein, we report a new microfluidic mixing mode that enables preparation of µHDL with DSPC in high yield (≥90% on a protein basis). The critical mechanism of this mode is a spontaneous asymmetric distribution of the ethanol flow injected in a symmetric manner followed by turbulent mixing in a simple rectangular parallelepiped-shaped chip.


Subject(s)
Lipoproteins, HDL , Microfluidic Analytical Techniques , Nanoparticles , Phosphatidylcholines , Phosphatidylcholines/chemistry , Nanoparticles/chemistry , Lipoproteins, HDL/chemistry , Lipoproteins, HDL/metabolism , Microfluidic Analytical Techniques/instrumentation , Lab-On-A-Chip Devices , Biomimetic Materials/chemistry
2.
ACS Appl Bio Mater ; 7(1): 99-103, 2024 01 15.
Article in English | MEDLINE | ID: mdl-38156817

ABSTRACT

The drug loading capacity of an engineered lipoprotein (eLP1) and the colloidal stability of drug-loaded eLP1s were assessed with 12 drugs with different charges/hydrophobicities. The capacity was largely correlated with their log P values, and the binding to the protein moiety was suggested for two drugs. The size of drug-loaded eLP1 formulations after freeze-drying followed by resolubilization hardly changed. The eLP1 formulation of travoprost, a clinically used drug in eye drop formulations, maintained its small size (19 nm) for 1 h at 37 °C in an artificial tear solution, whereas the liposome counterpart of 112 nm in diameter aggregated.


Subject(s)
Liposomes , Nanoparticles , Ophthalmic Solutions , Particle Size , Lipoproteins
3.
Genes Cells ; 28(12): 881-892, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37850683

ABSTRACT

The internalization of engineered high-density lipoprotein nanoparticles (engineered lipoproteins [eLPs]) with different lipid and protein compositions, zeta potentials, and/or sizes were analyzed in representative plant and mammalian cells. The impact of the addition of a cell-penetrating peptide to eLPs on the internalization was very small in Bright Yellow (BY)-2 protoplasts compared with HeLa cells. When eLPs were prepared with one of the abundant lipids in BY-2 cells, digalactosyldiacylglycerol (DGDG) (eLP4), its internalization was dramatically increased only in HeLa cells. Such an increase in HeLa cells was also obtained for liposomes containing DGDG in a DGDG content-dependent manner. Increasing the size and zeta potential of eLPs improved their internalization in both HeLa cells and in BY-2 protoplasts but to quite varying degrees. Although eLPs tended to stay at the plasma membrane (PM) in BY-2 protoplasts with much less internalization, the PM-bound eLPs somehow promoted the internalization of coexisting nanobeads in cell culture media. These results provide fundamental insight into the future design of lipid nanoparticles for drug delivery in mammalian and plant cells.


Subject(s)
Lipoproteins , Nanoparticles , Animals , Humans , HeLa Cells , Nanoparticles/chemistry , Mammals
4.
Biochemistry ; 59(15): 1455-1464, 2020 04 21.
Article in English | MEDLINE | ID: mdl-32223124

ABSTRACT

High-density lipoprotein (HDL) is a naturally occurring composite of lipids and lipid-binding proteins. The cholate dialysis method, first reported by Jonas in 1969, is the most widely used approach for reconstituting discoidal HDL (dHDL) in test tubes with phospholipids and the most dominant protein, apolipoprotein A-1 (apoA-I). Here, we show that a dHDL-relevant complex can also be prepared by gently mixing 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and apoA-I or its mutants in ethanol/H2O solutions containing urea at a concentration of a few molar and then incubating the mixture at the gel-liquid crystalline phase transition temperature in test tubes. Subsequent purification steps involve quick dialysis following size exclusion chromatography. The yields (73 ± 3% and 70 ± 1% protein and DMPC, respectively) of the resulting HDL-like nanoparticles, designated as uHDL, were comparable to the values of 68 ± 9% and 71 ± 12% obtained in the cholate dialysis method. Using apoA-I and two mutants, the key factor in this method was found to be urea at the folded and unfolded transition midpoint concentration. By using this urea-assisted method in the presence of a hydrophobic drug, all-trans-retinoic acid (ATRA), one-step preparation of ATRA-loaded uHDL was also possible. The loading efficiency was comparable to that in the mixing of ATRA and uHDL or dHDL reconstituted by the cholate dialysis method. Atomic force microscopy analysis revealed that uHDL and ATRA-loaded uHDL were discoidal. Our urea-assisted method is an easy and efficient method for reconstituting dHDL and can be utilized to prepare various drug-dHDL complexes.


Subject(s)
Lipoproteins, HDL/analysis , Urea/chemistry , Apolipoprotein A-I/chemistry , Apolipoprotein A-I/genetics , Humans , Hydrophobic and Hydrophilic Interactions , Tretinoin/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...