Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
1.
PLoS One ; 19(5): e0295971, 2024.
Article in English | MEDLINE | ID: mdl-38709794

ABSTRACT

The human genome is pervasively transcribed and produces a wide variety of long non-coding RNAs (lncRNAs), constituting the majority of transcripts across human cell types. Some specific nuclear lncRNAs have been shown to be important regulatory components acting locally. As RNA-chromatin interaction and Hi-C chromatin conformation data showed that chromatin interactions of nuclear lncRNAs are determined by the local chromatin 3D conformation, we used Hi-C data to identify potential target genes of lncRNAs. RNA-protein interaction data suggested that nuclear lncRNAs act as scaffolds to recruit regulatory proteins to target promoters and enhancers. Nuclear lncRNAs may therefore play a role in directing regulatory factors to locations spatially close to the lncRNA gene. We provide the analysis results through an interactive visualization web portal at https://fantom.gsc.riken.jp/zenbu/reports/#F6_3D_lncRNA.


Subject(s)
Chromatin , RNA, Long Noncoding , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Chromatin/metabolism , Chromatin/genetics , Humans , Molecular Sequence Annotation , Cell Nucleus/metabolism , Cell Nucleus/genetics , Genome, Human , Promoter Regions, Genetic
2.
NAR Genom Bioinform ; 5(3): lqad075, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37608799

ABSTRACT

In the genomic era, data dissemination and visualization is an integral part of scientific publications and research projects involving international consortia producing massive genome-wide data sets, intra-organizational collaborations, or individual labs. However, creating custom supporting websites is oftentimes impractical due to the required programming effort, web server infrastructure, and data storage facilities, as well as the long-term maintenance burden. ZENBU-Reports (https://fantom.gsc.riken.jp/zenbu/reports) is a web application to create interactive scientific web portals by using graphical interfaces while providing storage and secured collaborative sharing for data uploaded by users. ZENBU-Reports provides the scientific visualization elements commonly used in supplementary websites, publications and presentations, presenting a complete solution for the interactive display and dissemination of data and analysis results during the full lifespan of a scientific project both during the active research phase and after publication of the results.

3.
Nat Biotechnol ; 2023 Aug 17.
Article in English | MEDLINE | ID: mdl-37592035

ABSTRACT

Single-cell omics technologies enable molecular characterization of diverse cell types and states, but how the resulting transcriptional and epigenetic profiles depend on the cell's genetic background remains understudied. We describe Monopogen, a computational tool to detect single-nucleotide variants (SNVs) from single-cell sequencing data. Monopogen leverages linkage disequilibrium from external reference panels to identify germline SNVs and detects putative somatic SNVs using allele cosegregating patterns at the cell population level. It can identify 100 K to 3 M germline SNVs achieving a genotyping accuracy of 95%, together with hundreds of putative somatic SNVs. Monopogen-derived genotypes enable global and local ancestry inference and identification of admixed samples. It identifies variants associated with cardiomyocyte metabolic levels and epigenomic programs. It also improves putative somatic SNV detection that enables clonal lineage tracing in primary human clonal hematopoiesis. Monopogen brings together population genetics, cell lineage tracing and single-cell omics to uncover genetic determinants of cellular processes.

4.
Immunity ; 56(8): 1939-1954.e12, 2023 08 08.
Article in English | MEDLINE | ID: mdl-37442134

ABSTRACT

Lung infection during severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) via the angiotensin-I-converting enzyme 2 (ACE2) receptor induces a cytokine storm. However, the precise mechanisms involved in severe COVID-19 pneumonia are unknown. Here, we showed that interleukin-10 (IL-10) induced the expression of ACE2 in normal alveolar macrophages, causing them to become vectors for SARS-CoV-2. The inhibition of this system in hamster models attenuated SARS-CoV-2 pathogenicity. Genome-wide association and quantitative trait locus analyses identified a IFNAR2-IL10RB readthrough transcript, COVID-19 infectivity-enhancing dual receptor (CiDRE), which was highly expressed in patients harboring COVID-19 risk variants at the IFNAR2 locus. We showed that CiDRE exerted synergistic effects via the IL-10-ACE2 axis in alveolar macrophages and functioned as a decoy receptor for type I interferons. Collectively, our data show that high IL-10 and CiDRE expression are potential risk factors for severe COVID-19. Thus, IL-10R and CiDRE inhibitors might be useful COVID-19 therapies.


Subject(s)
COVID-19 , Humans , COVID-19/genetics , SARS-CoV-2 , Angiotensin-Converting Enzyme 2/genetics , Interleukin-10/genetics , Macrophages, Alveolar/metabolism , Genome-Wide Association Study , Peptidyl-Dipeptidase A/metabolism
5.
Stem Cells Transl Med ; 12(6): 379-390, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37263619

ABSTRACT

Human multipotent mesenchymal stromal/stem cells (MSCs) have been utilized in cell therapy for various diseases and their clinical applications are expected to increase in the future. However, the variation in MSC-based product quality due to the MSC heterogeneity has resulted in significant constraints in the clinical utility of MSCs. Therefore, we hypothesized that it might be important to identify and ensure/enrich suitable cell subpopulations for therapies using MSC-based products. In this study, we aimed to identify functional cell subpopulations to predict the efficacy of angiogenic therapy using bone marrow-derived MSCs (BM-MSCs). To assess its angiogenic potency, we observed various levels of vascular endothelial growth factor (VEGF) secretion among 11 donor-derived BM-MSC lines under in vitro ischemic culture conditions. Next, by clarifying the heterogeneity of BM-MSCs using single-cell RNA-sequencing analysis, we identified a functional cell subpopulation that contributed to the overall VEGF production in BM-MSC lines under ischemic conditions. We also found that leucine-rich repeat-containing 75A (LRRC75A) was more highly expressed in this cell subpopulation than in the others. Importantly, knockdown of LRRC75A using small interfering RNA resulted in significant inhibition of VEGF secretion in ischemic BM-MSCs, indicating that LRRC75A regulates VEGF secretion under ischemic conditions. Therefore, LRRC75A may be a useful biomarker to identify cell subpopulations that contribute to the angiogenic effects of BM-MSCs. Our work provides evidence that a strategy based on single-cell transcriptome profiles is effective for identifying functional cell subpopulations in heterogeneous MSC-based products.


Subject(s)
Mesenchymal Stem Cells , Vascular Endothelial Growth Factor A , Humans , Bone Marrow Cells , Cell Differentiation , Cell Proliferation , Ischemia/genetics , Ischemia/therapy , Ischemia/metabolism , Single-Cell Gene Expression Analysis , Stem Cells , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factors/metabolism , Vascular Endothelial Growth Factors/pharmacology
6.
Cell Rep ; 41(13): 111893, 2022 12 27.
Article in English | MEDLINE | ID: mdl-36577377

ABSTRACT

Within the scope of the FANTOM6 consortium, we perform a large-scale knockdown of 200 long non-coding RNAs (lncRNAs) in human induced pluripotent stem cells (iPSCs) and systematically characterize their roles in self-renewal and pluripotency. We find 36 lncRNAs (18%) exhibiting cell growth inhibition. From the knockdown of 123 lncRNAs with transcriptome profiling, 36 lncRNAs (29.3%) show molecular phenotypes. Integrating the molecular phenotypes with chromatin-interaction assays further reveals cis- and trans-interacting partners as potential primary targets. Additionally, cell-type enrichment analysis identifies lncRNAs associated with pluripotency, while the knockdown of LINC02595, CATG00000090305.1, and RP11-148B6.2 modulates colony formation of iPSCs. We compare our results with previously published fibroblasts phenotyping data and find that 2.9% of the lncRNAs exhibit a consistent cell growth phenotype, whereas we observe 58.3% agreement in molecular phenotypes. This highlights that molecular phenotyping is more comprehensive in revealing affected pathways.


Subject(s)
Induced Pluripotent Stem Cells , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Induced Pluripotent Stem Cells/metabolism , Oligonucleotides, Antisense , Gene Expression Profiling/methods , Embryonic Stem Cells/metabolism
7.
Front Immunol ; 13: 977117, 2022.
Article in English | MEDLINE | ID: mdl-36353619

ABSTRACT

Cytotoxic CD4+ T cells (CD4-CTLs) show the presence of cytolytic granules, which include the enzymes granzyme and perforin. The cells have a pathogenic and protective role in various diseases, including cancer, viral infection, and autoimmune disease. In mice, cytotoxic CD4+ T cells express CD8αα+ and reside in the intestine (mouse CD4+CTLs; mCD4-CTLs). The population of cytotoxic CD4+ T cells in the human intestine is currently unknown. Moreover, it is unclear how cytotoxic CD4 T cells change in patients with inflammatory bowel disease (IBD). Here, we aimed to identify cytotoxic CD4+ T cells in the human intestine and analyze the characteristics of the population in patients with IBD using single-cell RNA-seq (scRNA-seq). In CD4+ T cells, granzyme and perforin expression was high in humanMAIT (hMAIT) cells and hCD4+CD8A+ T cell cluster. Both CD4 and CD8A were expressed in hTreg, hMAIT, and hCD4+CD8A+ T cell clusters. Next we performed fast gene set enrichment analysis to identify cell populations that showed homology to mCD4CTLs. The analysis identified the hCD4+CD8A+ T cell cluster (hCTL-like population; hCD4-CTL) similar to mouse CTLs. The percentage of CD4+CD8A+ T cells among the total CD4+ T cells in the inflamed intestine of the patients with Crohn's disease was significantly reduced compared with that in the noninflamed intestine of the patients. In summary, we identified cytotoxic CD4+CD8+ T cells in the small intestine of humans. The integration of the mouse and human sc-RNA-seq data analysis highlight an approach to identify human cell populations related to mouse cell populations, which may help determine the functional properties of several human cell populations in mice.


Subject(s)
CD8-Positive T-Lymphocytes , Inflammatory Bowel Diseases , Animals , Humans , Mice , CD4-Positive T-Lymphocytes , Granzymes/genetics , Granzymes/metabolism , Inflammatory Bowel Diseases/genetics , Inflammatory Bowel Diseases/metabolism , Perforin/genetics , Perforin/metabolism , Transcriptome , Intestines/immunology , T-Lymphocytes, Cytotoxic/immunology
8.
Bioinformatics ; 38(22): 5126-5128, 2022 11 15.
Article in English | MEDLINE | ID: mdl-36173306

ABSTRACT

MOTIVATION: Cell type-specific activities of cis-regulatory elements (CRE) are central to understanding gene regulation and disease predisposition. Single-cell RNA 5'end sequencing (sc-end5-seq) captures the transcription start sites (TSS) which can be used as a proxy to measure the activity of transcribed CREs (tCREs). However, a substantial fraction of TSS identified from sc-end5-seq data may not be genuine due to various artifacts, hindering the use of sc-end5-seq for de novo discovery of tCREs. RESULTS: We developed SCAFE-Single-Cell Analysis of Five-prime Ends-a software suite that processes sc-end5-seq data to de novo identify TSS clusters based on multiple logistic regression. It annotates tCREs based on the identified TSS clusters and generates a tCRE-by-cell count matrix for downstream analyses. The software suite consists of a set of flexible tools that could either be run independently or as pre-configured workflows. AVAILABILITY AND IMPLEMENTATION: SCAFE is implemented in Perl and R. The source code and documentation are freely available for download under the MIT License from https://github.com/chung-lab/SCAFE. Docker images are available from https://hub.docker.com/r/cchon/scafe. The submitted software version and test data are archived at https://doi.org/10.5281/zenodo.7023163 and https://doi.org/10.5281/zenodo.7024060, respectively. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Regulatory Sequences, Nucleic Acid , Software , Workflow , Transcription Initiation Site
9.
Genome Res ; 2022 Aug 12.
Article in English | MEDLINE | ID: mdl-35961773

ABSTRACT

In eukaryotes, capped RNAs include long transcripts such as messenger RNAs and long noncoding RNAs, as well as shorter transcripts such as spliceosomal RNAs, small nucleolar RNAs, and enhancer RNAs. Long capped transcripts can be profiled using cap analysis gene expression (CAGE) sequencing and other methods. Here, we describe a sequencing library preparation protocol for short capped RNAs, apply it to a differentiation time course of the human cell line THP-1, and systematically compare the landscape of short capped RNAs to that of long capped RNAs. Transcription initiation peaks associated with genes in the sense direction have a strong preference to produce either long or short capped RNAs, with one out of six peaks detected in the short capped RNA libraries only. Gene-associated short capped RNAs have highly specific 3' ends, typically overlapping splice sites. Enhancers also preferentially generate either short or long capped RNAs, with 10% of enhancers observed in the short capped RNA libraries only. Enhancers producing either short or long capped RNAs show enrichment for GWAS-associated disease SNPs. We conclude that deep sequencing of short capped RNAs reveals new families of noncoding RNAs and elucidates the diversity of transcripts generated at known and novel promoters and enhancers.

10.
J Invest Dermatol ; 142(12): 3313-3326.e13, 2022 12.
Article in English | MEDLINE | ID: mdl-35777499

ABSTRACT

Psoriasis is a chronic inflammatory skin disease characterized by epidermal hyperplasia and hyperkeratosis, immune cell infiltration and vascular remodeling. Despite the emerging recognition of vascular normalization as a potential strategy for managing psoriasis, an in-depth delineation of the remodeled dermal vasculature has been missing. In this study, we exploited 5' single-cell RNA sequencing to investigate the transcriptomic alterations in different subpopulations of blood vascular and lymphatic endothelial cells directly isolated from psoriatic and healthy human skin. Individual subtypes of endothelial cells underwent specific molecular repatterning associated with cell adhesion and extracellular matrix organization. Blood capillaries, in particular, showed upregulation of the melanoma cell adhesion molecule as well as its binding partners and adopted postcapillary venule‒like characteristics during chronic inflammation that are more permissive to leukocyte transmigration. We also identified psoriasis-specific interactions between cis-regulatory enhancers and promoters for each endothelial cell subtype, revealing the dysregulated gene regulatory networks in psoriasis. Together, our results provide more insights into the specific transcriptional responses and epigenetic signatures of endothelial cells lining different vessel compartments in chronic skin inflammation.


Subject(s)
Dermatitis , Psoriasis , Humans , Capillaries , Venules , Endothelial Cells , Psoriasis/genetics , Skin , Inflammation
11.
Regen Ther ; 20: 165-186, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35620640

ABSTRACT

Introduction: Efficient induction of the otic placode, the developmental origin of the inner ear from human pluripotent stem cells (hPSCs), provides a robust platform for otic development and sensorineural hearing loss modelling. Nevertheless, there remains a limited capacity of otic lineage specification from hPSCs by stepwise differentiation methods, since the critical factors for successful otic cell differentiation have not been thoroughly investigated. In this study, we developed a novel differentiation system involving the use of a three-dimensional (3D) floating culture with signalling factors for generating otic cell lineages via stepwise differentiation of hPSCs. Methods: We differentiated hPSCs into preplacodal cells under a two-dimensional (2D) monolayer culture. Then, we transferred the induced preplacodal cells into a 3D floating culture under the control of the fibroblast growth factor (FGF), bone morphogenetic protein (BMP), retinoic acid (RA) and WNT signalling pathways. We evaluated the characteristics of the induced cells using immunocytochemistry, quantitative PCR (qPCR), population averaging, and single-cell RNA-seq (RNA-seq) analysis. We further investigated the methods for differentiating otic progenitors towards hair cells by overexpression of defined transcription factors. Results: We demonstrated that hPSC-derived preplacodal cells acquired the potential to differentiate into posterior placodal cells in 3D floating culture with FGF2 and RA. Subsequent activation of WNT signalling induced otic placodal cell formation. By single-cell RNA-seq (scRNA-seq) analysis, we identified multiple clusters of otic placode- and otocyst marker-positive cells in the induced spheres. Moreover, the induced otic cells showed the potential to generate hair cell-like cells by overexpression of the transcription factors ATOH1, POU4F3 and GFI1. Conclusions: We demonstrated the critical role of FGF2, RA and WNT signalling in a 3D environment for the in vitro differentiation of otic lineage cells from hPSCs. The induced otic cells had the capacity to differentiate into inner ear hair cells with stereociliary bundles and tip link-like structures. The protocol will be useful for in vitro disease modelling of sensorineural hearing loss and human inner ear development and thus contribute to drug screening and stem cell-based regenerative medicine.

12.
Methods Mol Biol ; 2490: 141-156, 2022.
Article in English | MEDLINE | ID: mdl-35486244

ABSTRACT

Single-cell transcriptome analysis reveals heterogeneous cell types in complex tissues and leads to unexpected biological findings when compared to bulk populations. However most of the methods focus on the 3'-end of polyadenylated transcripts using droplet-based technology. To achieve complete transcriptome, we describe single-cell 5'-end transcriptome protocol with random primed-cDNA harvesting on the Fluidigm C1™ platform which can isolate and process up to 96 cells from a single run with custom library preparation. The method enables detection of Transcription Start Site (TSS) at the single-cell resolution yielding a more comprehensive overview of gene regulatory elements governing in the EpiSC-like cell (EpiLC) including non-polyadenylated RNA and enhancer RNA activities.


Subject(s)
Gene Expression Profiling , Transcriptome , Gene Expression Profiling/methods , RNA/genetics , RNA/metabolism , RNA-Seq , Sequence Analysis, RNA/methods , Exome Sequencing
13.
Glia ; 70(7): 1267-1288, 2022 07.
Article in English | MEDLINE | ID: mdl-35262217

ABSTRACT

The human brain is a complex, three-dimensional structure. To better recapitulate brain complexity, recent efforts have focused on the development of human-specific midbrain organoids. Human iPSC-derived midbrain organoids consist of differentiated and functional neurons, which contain active synapses, as well as astrocytes and oligodendrocytes. However, the absence of microglia, with their ability to remodel neuronal networks and phagocytose apoptotic cells and debris, represents a major disadvantage for the current midbrain organoid systems. Additionally, neuroinflammation-related disease modeling is not possible in the absence of microglia. So far, no studies about the effects of human iPSC-derived microglia on midbrain organoid neural cells have been published. Here we describe an approach to derive microglia from human iPSCs and integrate them into iPSC-derived midbrain organoids. Using single nuclear RNA Sequencing, we provide a detailed characterization of microglia in midbrain organoids as well as the influence of their presence on the other cells of the organoids. Furthermore, we describe the effects that microglia have on cell death and oxidative stress-related gene expression. Finally, we show that microglia in midbrain organoids affect synaptic remodeling and increase neuronal excitability. Altogether, we show a more suitable system to further investigate brain development, as well as neurodegenerative diseases and neuroinflammation.


Subject(s)
Induced Pluripotent Stem Cells , Organoids , Humans , Induced Pluripotent Stem Cells/metabolism , Mesencephalon , Microglia/metabolism , Neurogenesis/genetics , Organoids/metabolism
14.
BMC Genom Data ; 22(1): 33, 2021 09 14.
Article in English | MEDLINE | ID: mdl-34521352

ABSTRACT

BACKGROUND: The lymphatic and the blood vasculature are closely related systems that collaborate to ensure the organism's physiological function. Despite their common developmental origin, they present distinct functional fates in adulthood that rely on robust lineage-specific regulatory programs. The recent technological boost in sequencing approaches unveiled long noncoding RNAs (lncRNAs) as prominent regulatory players of various gene expression levels in a cell-type-specific manner. RESULTS: To investigate the potential roles of lncRNAs in vascular biology, we performed antisense oligonucleotide (ASO) knockdowns of lncRNA candidates specifically expressed either in human lymphatic or blood vascular endothelial cells (LECs or BECs) followed by Cap Analysis of Gene Expression (CAGE-Seq). Here, we describe the quality control steps adopted in our analysis pipeline before determining the knockdown effects of three ASOs per lncRNA target on the LEC or BEC transcriptomes. In this regard, we especially observed that the choice of negative control ASOs can dramatically impact the conclusions drawn from the analysis depending on the cellular background. CONCLUSION: In conclusion, the comparison of negative control ASO effects on the targeted cell type transcriptomes highlights the essential need to select a proper control set of multiple negative control ASO based on the investigated cell types.


Subject(s)
Gene Knockdown Techniques/methods , Oligonucleotides, Antisense/genetics , Organ Specificity/genetics , RNA, Long Noncoding/genetics , Adult , Endothelial Cells/metabolism , Gene Knockdown Techniques/standards , Humans , Lymphatic System/cytology , Lymphatic System/metabolism , Oligonucleotides, Antisense/standards , Transcriptome
15.
Essays Biochem ; 65(4): 761-773, 2021 10 27.
Article in English | MEDLINE | ID: mdl-33835127

ABSTRACT

Recent efforts on the characterization of long non-coding RNAs (lncRNAs) revealed their functional roles in modulating diverse cellular processes. These include pluripotency maintenance, lineage commitment, carcinogenesis, and pathogenesis of various diseases. By interacting with DNA, RNA and protein, lncRNAs mediate multifaceted mechanisms to regulate transcription, RNA processing, RNA interference and translation. Of more than 173000 discovered lncRNAs, the majority remain functionally unknown. The cell type-specific expression and localization of the lncRNA also suggest potential distinct functions of lncRNAs across different cell types. This highlights the niche of identifying functional lncRNAs in different biological processes and diseases through high-throughput (HTP) screening. This review summarizes the current work performed and perspectives on HTP screening of functional lncRNAs where different technologies, platforms, cellular responses and the downstream analyses are discussed. We hope to provide a better picture in applying different technologies to facilitate functional annotation of lncRNA efficiently.


Subject(s)
RNA, Long Noncoding , High-Throughput Screening Assays , RNA, Long Noncoding/genetics
16.
Stem Cell Reports ; 16(4): 810-824, 2021 04 13.
Article in English | MEDLINE | ID: mdl-33711266

ABSTRACT

Cellular reprogramming is driven by a defined set of transcription factors; however, the regulatory logic that underlies cell-type specification and diversification remains elusive. Single-cell RNA-seq provides unprecedented coverage to measure dynamic molecular changes at the single-cell resolution. Here, we multiplex and ectopically express 20 pro-neuronal transcription factors in human dermal fibroblasts and demonstrate a widespread diversification of neurons based on cell morphology and canonical neuronal marker expressions. Single-cell RNA-seq analysis reveals diverse and distinct neuronal subtypes, including reprogramming processes that strongly correlate with the developing brain. Gene mapping of 20 exogenous pro-neuronal transcription factors further unveiled key determinants responsible for neuronal lineage specification and a regulatory logic dictating neuronal diversification, including glutamatergic and cholinergic neurons. The multiplex scRNA-seq approach is a robust and scalable approach to elucidate lineage and cellular specification across various biological systems.


Subject(s)
Neurons/metabolism , RNA-Seq , Single-Cell Analysis , Cholinergic Neurons , Gene Expression Profiling , Gene Expression Regulation, Developmental , Glutamates/metabolism , Humans , Infant, Newborn , Neurons/cytology , PAX6 Transcription Factor/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcription Factors/metabolism
17.
Nat Commun ; 12(1): 925, 2021 02 10.
Article in English | MEDLINE | ID: mdl-33568674

ABSTRACT

Recent studies have revealed the importance of long noncoding RNAs (lncRNAs) as tissue-specific regulators of gene expression. There is ample evidence that distinct types of vasculature undergo tight transcriptional control to preserve their structure, identity, and functions. We determine a comprehensive map of lineage-specific lncRNAs in human dermal lymphatic and blood vascular endothelial cells (LECs and BECs), combining RNA-Seq and CAGE-Seq. Subsequent antisense oligonucleotide-knockdown transcriptomic profiling of two LEC- and two BEC-specific lncRNAs identifies LETR1 as a critical gatekeeper of the global LEC transcriptome. Deep RNA-DNA, RNA-protein interaction studies, and phenotype rescue analyses reveal that LETR1 is a nuclear trans-acting lncRNA modulating, via key epigenetic factors, the expression of essential target genes, including KLF4 and SEMA3C, governing the growth and migratory ability of LECs. Together, our study provides several lines of evidence supporting the intriguing concept that every cell type expresses precise lncRNA signatures to control lineage-specific regulatory programs.


Subject(s)
Endothelial Cells/cytology , Kruppel-Like Transcription Factors/metabolism , Semaphorins/metabolism , Cell Movement , Cell Proliferation , Endothelial Cells/metabolism , Gene Expression Regulation , Humans , Kruppel-Like Factor 4 , Kruppel-Like Transcription Factors/genetics , RNA, Long Noncoding , Semaphorins/genetics
19.
Int J Biol Macromol ; 170: 415-423, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33373636

ABSTRACT

Alzheimer's disease (AD), a common chronic neurodegenerative disease, has become a major public health concern. Despite years of research, therapeutics for AD are limited. Overexpression of secretory glutaminyl cyclase (sQC) in AD brain leads to the formation of a highly neurotoxic pyroglutamate variant of amyloid beta, pGlu-Aß, which acts as a potential seed for the aggregation of full length Aß. Preventing the formation of pGlu-Aß through inhibition of sQC has become an attractive disease-modifying therapy in AD. In this current study, through a pharmacophore assisted high throughput virtual screening, we report a novel sQC inhibitor (Cpd-41) with a piperidine-4-carboxamide moiety (IC50 = 34 µM). Systematic molecular docking, MD simulations and X-ray crystallographic analysis provided atomistic details of the binding of Cpd-41 in the active site of sQC. The unique mode of binding and moderate toxicity of Cpd-41 make this molecule an attractive candidate for designing high affinity sQC inhibitors.


Subject(s)
Aminoacyltransferases/antagonists & inhibitors , Piperidines/pharmacology , Alzheimer Disease/drug therapy , Amyloid beta-Peptides/metabolism , Brain/drug effects , Brain/metabolism , Cell Line, Tumor , Humans , Molecular Docking Simulation , Pyrrolidonecarboxylic Acid/metabolism
20.
Exp Mol Med ; 52(9): 1409-1418, 2020 09.
Article in English | MEDLINE | ID: mdl-32929222

ABSTRACT

The human body consists of 37 trillion single cells represented by over 50 organs that are stitched together to make us who we are, yet we still have very little understanding about the basic units of our body: what cell types and states make up our organs both compositionally and spatially. Previous efforts to profile a wide range of human cell types have been attempted by the FANTOM and GTEx consortia. Now, with the advancement in genomic technologies, profiling the human body at single-cell resolution is possible and will generate an unprecedented wealth of data that will accelerate basic and clinical research with tangible applications to future medicine. To date, several major organs have been profiled, but the challenges lie in ways to integrate single-cell genomics data in a meaningful way. In recent years, several consortia have begun to introduce harmonization and equity in data collection and analysis. Herein, we introduce existing and nascent single-cell genomics consortia, and present benefits to necessitate single-cell genomic consortia in a regional environment to achieve the universal human cell reference dataset.


Subject(s)
Genomics , Single-Cell Analysis , Animals , Computational Biology/methods , Databases, Genetic , Genome-Wide Association Study/methods , Genomics/methods , Humans , Single-Cell Analysis/methods , Web Browser
SELECTION OF CITATIONS
SEARCH DETAIL
...