Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 256
Filter
1.
Int J Eat Disord ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953334

ABSTRACT

OBJECTIVE: Adults with binge-eating disorder (BED), compared with those without BED, demonstrate higher blood-oxygen-level-dependent (BOLD) response to food cues in reward-related regions of the brain. It is not known whether cognitive behavioral therapy (CBT) can reverse this reward system hyperactivation. This randomized controlled trial (RCT) assessed changes in BOLD response to binge-eating cues following CBT versus wait-list control (WLC). METHOD: Females with BED (N = 40) were randomized to CBT or WLC. Participants completed assessments at baseline and 16 weeks including measures of eating and appetite and functional magnetic resonance imaging (fMRI) to measure BOLD response while listening to personalized scripts of binge-eating and neutral-relaxing cues. Data were analyzed using general linear models with mixed effects. RESULTS: Overall retention rate was 87.5%. CBT achieved significantly greater reductions in binge-eating episodes than WLC (mean ± standard error decline of 14.6 ± 2.7 vs. 5.7 ± 2.8 episodes in the past 28 days, respectively; p = 0.03). CBT and WLC did not differ significantly in changes in neural responses to binge-eating stimuli during the fMRI sessions. Compared with WLC, CBT had significantly greater improvements in reward-based eating drive, disinhibition, and hunger as assessed by questionnaires (ps < 0.05). DISCUSSION: CBT was effective in reducing binge eating, but, contrary to our hypothesis, CBT did not improve BOLD response to auditory binge-eating stimuli in reward regions of the brain. Further studies are needed to assess mechanisms underlying improvements with CBT for BED. TRIAL REGISTRATION: ClinicalTrials.gov identifier: NCT03604172.

2.
J Neurodev Disord ; 16(1): 35, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38918700

ABSTRACT

BACKGROUND: Minor physical anomalies (MPAs) are congenital morphological abnormalities linked to disruptions of fetal development. MPAs are common in 22q11.2 deletion syndrome (22q11DS) and psychosis spectrum disorders (PS) and likely represent a disruption of early embryologic development that may help identify overlapping mechanisms linked to psychosis in these disorders. METHODS: Here, 2D digital photographs were collected from 22q11DS (n = 150), PS (n = 55), and typically developing (TD; n = 93) individuals. Photographs were analyzed using two computer-vision techniques: (1) DeepGestalt algorithm (Face2Gene (F2G)) technology to identify the presence of genetically mediated facial disorders, and (2) Emotrics-a semi-automated machine learning technique that localizes and measures facial features. RESULTS: F2G reliably identified patients with 22q11DS; faces of PS patients were matched to several genetic conditions including FragileX and 22q11DS. PCA-derived factor loadings of all F2G scores indicated unique and overlapping facial patterns that were related to both 22q11DS and PS. Regional facial measurements of the eyes and nose were smaller in 22q11DS as compared to TD, while PS showed intermediate measurements. CONCLUSIONS: The extent to which craniofacial dysmorphology 22q11DS and PS overlapping and evident before the impairment or distress of sub-psychotic symptoms may allow us to identify at-risk youths more reliably and at an earlier stage of development.


Subject(s)
Craniofacial Abnormalities , DiGeorge Syndrome , Psychotic Disorders , Humans , DiGeorge Syndrome/genetics , DiGeorge Syndrome/physiopathology , Psychotic Disorders/genetics , Female , Male , Adolescent , Child , Craniofacial Abnormalities/genetics , Young Adult , Adult , Machine Learning , Image Processing, Computer-Assisted
3.
medRxiv ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38883741

ABSTRACT

Background: Among the advancements in computed tomography (CT) technology, photon-counting computed tomography (PCCT) stands out as a significant innovation, providing superior spectral imaging capabilities while simultaneously reducing radiation exposure. Its long-term stability is important for clinical care, especially longitudinal studies, but is currently unknown. Purpose: This study sets out to comprehensively analyze the long-term stability of a first-generation clinical PCCT scanner. Materials and Methods: Over a two-year period, from November 2021 to November 2023, we conducted weekly identical experiments utilizing the same multi-energy CT protocol. These experiments included various tissue-mimicking inserts to rigorously assess the stability of Hounsfield Units (HU) and image noise in Virtual Monochromatic Images (VMIs) and iodine density maps. Throughout this period, notable software and hardware modifications were meticulously recorded. Each week, VMIs and iodine density maps were reconstructed and analyzed to evaluate quantitative stability over time. Results: Spectral results consistently demonstrated the quantitative stability of PCCT. VMIs exhibited stable HU values, such as variation in relative error for VMI 70 keV measuring 0.11% and 0.30% for single-source and dual-source modes, respectively. Similarly, noise levels remained stable with slight fluctuations linked to software changes for VMI 40 and 70 keV that corresponded to changes of 8 and 1 HU, respectively. Furthermore, iodine density quantification maintained stability and showed significant improvement with software and hardware changes, especially in dual-source mode with nominal errors decreasing from 1.44 to 0.03 mg/mL. Conclusion: This study provides the first long-term reproducibility assessment of quantitative PCCT imaging, highlighting its potential for the clinical arena. This study indicates its long-term utility in diagnostic radiology, especially for longitudinal studies.

4.
Hum Brain Mapp ; 45(8): e26714, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38878300

ABSTRACT

Functional networks often guide our interpretation of spatial maps of brain-phenotype associations. However, methods for assessing enrichment of associations within networks of interest have varied in terms of both scientific rigor and underlying assumptions. While some approaches have relied on subjective interpretations, others have made unrealistic assumptions about spatial properties of imaging data, leading to inflated false positive rates. We seek to address this gap in existing methodology by borrowing insight from a method widely used in genetics research for testing enrichment of associations between a set of genes and a phenotype of interest. We propose network enrichment significance testing (NEST), a flexible framework for testing the specificity of brain-phenotype associations to functional networks or other sub-regions of the brain. We apply NEST to study enrichment of associations with structural and functional brain imaging data from a large-scale neurodevelopmental cohort study.


Subject(s)
Brain , Phenotype , Humans , Brain/diagnostic imaging , Brain/physiology , Magnetic Resonance Imaging/methods , Nerve Net/diagnostic imaging , Nerve Net/physiology , Cohort Studies , Female , Male
5.
Sci Rep ; 14(1): 13923, 2024 06 17.
Article in English | MEDLINE | ID: mdl-38886407

ABSTRACT

While precision medicine applications of radiomics analysis are promising, differences in image acquisition can cause "batch effects" that reduce reproducibility and affect downstream predictive analyses. Harmonization methods such as ComBat have been developed to correct these effects, but evaluation methods for quantifying batch effects are inconsistent. In this study, we propose the use of the multivariate statistical test PERMANOVA and the Robust Effect Size Index (RESI) to better quantify and characterize batch effects in radiomics data. We evaluate these methods in both simulated and real radiomics features extracted from full-field digital mammography (FFDM) data. PERMANOVA demonstrated higher power than standard univariate statistical testing, and RESI was able to interpretably quantify the effect size of site at extremely large sample sizes. These methods show promise as more powerful and interpretable methods for the detection and quantification of batch effects in radiomics studies.


Subject(s)
Mammography , Humans , Mammography/methods , Female , Multivariate Analysis , Breast Neoplasms/diagnostic imaging , Reproducibility of Results , Image Processing, Computer-Assisted/methods , Radiomics
6.
bioRxiv ; 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38915591

ABSTRACT

Human cortical development follows a sensorimotor-to-association sequence during childhood and adolescence1-6. The brain's capacity to enact this sequence over decades indicates that it relies on intrinsic mechanisms to regulate inter-regional differences in the timing of cortical maturation, yet regulators of human developmental chronology are not well understood. Given evidence from animal models that thalamic axons modulate windows of cortical plasticity7-12, here we evaluate the overarching hypothesis that structural connections between the thalamus and cortex help to coordinate cortical maturational heterochronicity during youth. We first introduce, cortically annotate, and anatomically validate a new atlas of human thalamocortical connections using diffusion tractography. By applying this atlas to three independent youth datasets (ages 8-23 years; total N = 2,676), we reproducibly demonstrate that thalamocortical connections develop along a maturational gradient that aligns with the cortex's sensorimotor-association axis. Associative cortical regions with thalamic connections that take longest to mature exhibit protracted expression of neurochemical, structural, and functional markers indicative of higher circuit plasticity as well as heightened environmental sensitivity. This work highlights a central role for the thalamus in the orchestration of hierarchically organized and environmentally sensitive windows of cortical developmental malleability.

7.
Mult Scler Relat Disord ; 87: 105628, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38759425

ABSTRACT

BACKGROUND: People with multiple sclerosis (pwMS) struggle with whether, how, and how much to disclose their diagnosis. They often expend resources to conceal their diagnosis, and hold beliefs that it may negatively affect their personal relationships and/or professional opportunities. To better understand these effects, we developed a measure to quantify concealment behaviors and disclosure beliefs. Our main objective is to evaluate relationships of DISCO-MS responses to health and quality of life in a multinational cohort. METHODS: Survey responses were obtained for DISCO-MS and PROMIS-MS scales: global health, communication, social roles participation, anxiety, depression, emotional / behavioral dyscontrol, fatigue, lower extremity function, positive affect / well-being, social roles satisfaction, sleep, stigma, upper extremity function, cognitive function, bladder control, bowel control, visual function. Simple linear regression assessed associations. RESULTS: 263 pwMS were include. Higher concealment was associated with higher anxiety (beta= 0.15 [0.07, 0.23]), depression (beta = 0.13 [0.05, 0.21]), emotional dyscontrol (beta = 0.12 [0.04, 0.20]), lower affect / well-being (beta = -0.13 [-0.21, - 0.05]). Higher anticipation of negative consequences of disclosure was associated with lower self-reported physical (beta = -0.15) and mental health (beta = -0.14), lower positive affect / well-being, social roles satisfaction, higher anxiety, depression, emotional dyscontrol, sleep disturbance, and higher perceived stigma. DISCUSSION: These results reveal potential consequences of diagnosis concealment for physical and mental health and quality of life. Raising awareness and implementing interventions may mitigate negative repercussions of concealment.


Subject(s)
Multiple Sclerosis , Quality of Life , Humans , Male , Female , Multiple Sclerosis/psychology , Multiple Sclerosis/diagnosis , Middle Aged , Adult , Social Stigma , Health Status , Depression/diagnosis , Depression/psychology
8.
bioRxiv ; 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38746228

ABSTRACT

Personalized functional networks (FNs) derived from functional magnetic resonance imaging (fMRI) data are useful for characterizing individual variations in the brain functional topography associated with the brain development, aging, and disorders. To facilitate applications of the personalized FNs with enhanced reliability and reproducibility, we develop an open-source toolbox that is user-friendly, extendable, and includes rigorous quality control (QC), featuring multiple user interfaces (graphics, command line, and a step-by-step guideline) and job-scheduling for high performance computing (HPC) clusters. Particularly, the toolbox, named personalized functional network modeling (pNet), takes fMRI inputs in either volumetric or surface type, ensuring compatibility with multiple fMRI data formats, and computes personalized FNs using two distinct modeling methods: one method optimizes the functional coherence of FNs, while the other enhances their independence. Additionally, the toolbox provides HTML-based reports for QC and visualization of personalized FNs. The toolbox is developed in both MATLAB and Python platforms with a modular design to facilitate extension and modification by users familiar with either programming language. We have evaluated the toolbox on two fMRI datasets and demonstrated its effectiveness and user-friendliness with interactive and scripting examples. pNet is publicly available at https://github.com/MLDataAnalytics/pNet.

9.
Dev Cogn Neurosci ; 66: 101370, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38583301

ABSTRACT

Childhood environments are critical in shaping cognitive neurodevelopment. With the increasing availability of large-scale neuroimaging datasets with deep phenotyping of childhood environments, we can now build upon prior studies that have considered relationships between one or a handful of environmental and neuroimaging features at a time. Here, we characterize the combined effects of hundreds of inter-connected and co-occurring features of a child's environment ("exposome") and investigate associations with each child's unique, multidimensional pattern of functional brain network organization ("functional topography") and cognition. We apply data-driven computational models to measure the exposome and define personalized functional brain networks in pre-registered analyses. Across matched discovery (n=5139, 48.5% female) and replication (n=5137, 47.1% female) samples from the Adolescent Brain Cognitive Development study, the exposome was associated with current (ages 9-10) and future (ages 11-12) cognition. Changes in the exposome were also associated with changes in cognition after accounting for baseline scores. Cross-validated ridge regressions revealed that the exposome is reflected in functional topography and can predict performance across cognitive domains. Importantly, a single measure capturing a child's exposome could more accurately and parsimoniously predict cognition than a wealth of personalized neuroimaging data, highlighting the importance of children's complex, multidimensional environments in cognitive neurodevelopment.

10.
Nat Commun ; 15(1): 3511, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664387

ABSTRACT

Human cortical maturation has been posited to be organized along the sensorimotor-association axis, a hierarchical axis of brain organization that spans from unimodal sensorimotor cortices to transmodal association cortices. Here, we investigate the hypothesis that the development of functional connectivity during childhood through adolescence conforms to the cortical hierarchy defined by the sensorimotor-association axis. We tested this pre-registered hypothesis in four large-scale, independent datasets (total n = 3355; ages 5-23 years): the Philadelphia Neurodevelopmental Cohort (n = 1207), Nathan Kline Institute-Rockland Sample (n = 397), Human Connectome Project: Development (n = 625), and Healthy Brain Network (n = 1126). Across datasets, the development of functional connectivity systematically varied along the sensorimotor-association axis. Connectivity in sensorimotor regions increased, whereas connectivity in association cortices declined, refining and reinforcing the cortical hierarchy. These consistent and generalizable results establish that the sensorimotor-association axis of cortical organization encodes the dominant pattern of functional connectivity development.


Subject(s)
Connectome , Magnetic Resonance Imaging , Sensorimotor Cortex , Humans , Adolescent , Female , Male , Young Adult , Child , Sensorimotor Cortex/physiology , Sensorimotor Cortex/diagnostic imaging , Child, Preschool , Nerve Net/physiology , Nerve Net/diagnostic imaging , Neural Pathways/physiology , Adult , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/physiology , Cerebral Cortex/growth & development
11.
Biol Psychiatry ; 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38460580

ABSTRACT

BACKGROUND: Symptoms of borderline personality disorder (BPD) often manifest during adolescence, but the underlying relationship between these debilitating symptoms and the development of functional brain networks is not well understood. Here, we aimed to investigate how multivariate patterns of functional connectivity are associated with borderline personality traits in large samples of young adults and adolescents. METHODS: We used functional magnetic resonance imaging data from young adults and adolescents from the HCP-YA (Human Connectome Project Young Adult) (n = 870, ages 22-37 years, 457 female) and the HCP-D (Human Connectome Project Development) (n = 223, ages 16-21 years, 121 female). A previously validated BPD proxy score was derived from the NEO Five-Factor Inventory. A ridge regression model with cross-validation and nested hyperparameter tuning was trained and tested in HCP-YA to predict BPD scores in unseen data from regional functional connectivity. The trained model was further tested on data from HCP-D without further tuning. Finally, we tested how the connectivity patterns associated with BPD aligned with age-related changes in connectivity. RESULTS: Multivariate functional connectivity patterns significantly predicted out-of-sample BPD scores in unseen data in young adults (HCP-YA ppermuted = .001) and older adolescents (HCP-D ppermuted = .001). Regional predictive capacity was heterogeneous; the most predictive regions were found in functional systems relevant for emotion regulation and executive function, including the ventral attention network. Finally, regional functional connectivity patterns that predicted BPD scores aligned with those associated with development in youth. CONCLUSIONS: Individual differences in functional connectivity in developmentally sensitive regions are associated with borderline personality traits.

12.
Neurology ; 102(6): e209161, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38447117

ABSTRACT

BACKGROUND AND OBJECTIVES: Genetic testing is now the standard of care for many neurologic conditions. Health care disparities are unfortunately widespread in the US health care system, but disparities in the utilization of genetic testing for neurologic conditions have not been studied. We tested the hypothesis that access to and results of genetic testing vary according to race, ethnicity, sex, socioeconomic status, and insurance status for adults with neurologic conditions. METHODS: We analyzed retrospective data from patients who underwent genetic evaluation and testing through our institution's neurogenetics program. We tested for differences between demographic groups in 3 steps of a genetic evaluation pathway: (1) attending a neurogenetic evaluation, (2) completing genetic testing, and (3) receiving a diagnostic result. We compared patients on this genetic evaluation pathway with the population of all neurology outpatients at our institution, using univariate and multivariable logistic regression analyses. RESULTS: Between 2015 and 2022, a total of 128,440 patients were seen in our outpatient neurology clinics and 2,540 patients underwent genetic evaluation. Black patients were less than half as likely as White patients to be evaluated (odds ratio [OR] 0.49, p < 0.001), and this disparity was similar after controlling for other demographic factors in multivariable analysis. Patients from the least wealthy quartile of zip codes were also less likely to be evaluated (OR 0.67, p < 0.001). Among patients who underwent evaluation, there were no disparities in the likelihood of completing genetic testing, nor in the likelihood of a diagnostic result after adjusting for age. Analyses restricted to specific indications for genetic testing supported these findings. DISCUSSION: We observed unequal utilization of our clinical neurogenetics program for patients from marginalized and minoritized demographic groups, especially Black patients. Among patients who do undergo evaluation, all groups benefit similarly from genetic testing when it is indicated. Understanding and removing barriers to accessing genetic testing will be essential to health care equity and optimal care for all patients with neurologic disorders.


Subject(s)
Nervous System Diseases , Neurology , Adult , Humans , Retrospective Studies , Nervous System Diseases/diagnosis , Nervous System Diseases/genetics , Ambulatory Care Facilities , Genetic Testing
13.
J Am Med Inform Assoc ; 31(6): 1348-1355, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38481027

ABSTRACT

OBJECTIVE: Large-language models (LLMs) can potentially revolutionize health care delivery and research, but risk propagating existing biases or introducing new ones. In epilepsy, social determinants of health are associated with disparities in care access, but their impact on seizure outcomes among those with access remains unclear. Here we (1) evaluated our validated, epilepsy-specific LLM for intrinsic bias, and (2) used LLM-extracted seizure outcomes to determine if different demographic groups have different seizure outcomes. MATERIALS AND METHODS: We tested our LLM for differences and equivalences in prediction accuracy and confidence across demographic groups defined by race, ethnicity, sex, income, and health insurance, using manually annotated notes. Next, we used LLM-classified seizure freedom at each office visit to test for demographic outcome disparities, using univariable and multivariable analyses. RESULTS: We analyzed 84 675 clinic visits from 25 612 unique patients seen at our epilepsy center. We found little evidence of bias in the prediction accuracy or confidence of outcome classifications across demographic groups. Multivariable analysis indicated worse seizure outcomes for female patients (OR 1.33, P ≤ .001), those with public insurance (OR 1.53, P ≤ .001), and those from lower-income zip codes (OR ≥1.22, P ≤ .007). Black patients had worse outcomes than White patients in univariable but not multivariable analysis (OR 1.03, P = .66). CONCLUSION: We found little evidence that our LLM was intrinsically biased against any demographic group. Seizure freedom extracted by LLM revealed disparities in seizure outcomes across several demographic groups. These findings quantify the critical need to reduce disparities in the care of people with epilepsy.


Subject(s)
Epilepsy , Healthcare Disparities , Seizures , Humans , Female , Male , Adult , Middle Aged , Natural Language Processing , Social Determinants of Health , Adolescent , Young Adult , Language
14.
Hum Brain Mapp ; 45(5): e26580, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38520359

ABSTRACT

Diffusion Spectrum Imaging (DSI) using dense Cartesian sampling of q-space has been shown to provide important advantages for modeling complex white matter architecture. However, its adoption has been limited by the lengthy acquisition time required. Sparser sampling of q-space combined with compressed sensing (CS) reconstruction techniques has been proposed as a way to reduce the scan time of DSI acquisitions. However prior studies have mainly evaluated CS-DSI in post-mortem or non-human data. At present, the capacity for CS-DSI to provide accurate and reliable measures of white matter anatomy and microstructure in the living human brain remains unclear. We evaluated the accuracy and inter-scan reliability of 6 different CS-DSI schemes that provided up to 80% reductions in scan time compared to a full DSI scheme. We capitalized on a dataset of 26 participants who were scanned over eight independent sessions using a full DSI scheme. From this full DSI scheme, we subsampled images to create a range of CS-DSI images. This allowed us to compare the accuracy and inter-scan reliability of derived measures of white matter structure (bundle segmentation, voxel-wise scalar maps) produced by the CS-DSI and the full DSI schemes. We found that CS-DSI estimates of both bundle segmentations and voxel-wise scalars were nearly as accurate and reliable as those generated by the full DSI scheme. Moreover, we found that the accuracy and reliability of CS-DSI was higher in white matter bundles that were more reliably segmented by the full DSI scheme. As a final step, we replicated the accuracy of CS-DSI in a prospectively acquired dataset (n = 20, scanned once). Together, these results illustrate the utility of CS-DSI for reliably delineating in vivo white matter architecture in a fraction of the scan time, underscoring its promise for both clinical and research applications.


Subject(s)
Diffusion Magnetic Resonance Imaging , White Matter , Humans , Reproducibility of Results , Diffusion Magnetic Resonance Imaging/methods , Brain/diagnostic imaging , Brain/anatomy & histology , White Matter/diagnostic imaging , White Matter/anatomy & histology , Autopsy , Algorithms
15.
Mult Scler ; : 13524585241238094, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38481081

ABSTRACT

This study aimed to determine whether choroid plexus volume (CPV) could differentiate multiple sclerosis (MS) from its mimics. A secondary analysis of two previously enrolled studies, 50 participants with MS and 64 with alternative diagnoses were included. CPV was automatically segmented from 3T magnetic resonance imaging (MRI), followed by manual review to remove misclassified tissue. Mean normalized choroid plexus volume (nCPV) to intracranial volume demonstrated relatively high specificity for MS participants in each cohort (0.80 and 0.76) with an area under the receiver-operator characteristic curve of 0.71 (95% confidence interval (CI) = 0.55-0.87) and 0.65 (95% CI = 0.52-0.77). In this preliminary study, nCPV differentiated MS from its mimics.

16.
Elife ; 122024 Feb 07.
Article in English | MEDLINE | ID: mdl-38324465

ABSTRACT

The cerebral cortex underlies many of our unique strengths and vulnerabilities, but efforts to understand human cortical organization are challenged by reliance on incompatible measurement methods at different spatial scales. Macroscale features such as cortical folding and functional activation are accessed through spatially dense neuroimaging maps, whereas microscale cellular and molecular features are typically measured with sparse postmortem sampling. Here, we integrate these distinct windows on brain organization by building upon existing postmortem data to impute, validate, and analyze a library of spatially dense neuroimaging-like maps of human cortical gene expression. These maps allow spatially unbiased discovery of cortical zones with extreme transcriptional profiles or unusually rapid transcriptional change which index distinct microstructure and predict neuroimaging measures of cortical folding and functional activation. Modules of spatially coexpressed genes define a family of canonical expression maps that integrate diverse spatial scales and temporal epochs of human brain organization - ranging from protein-protein interactions to large-scale systems for cognitive processing. These module maps also parse neuropsychiatric risk genes into subsets which tag distinct cyto-laminar features and differentially predict the location of altered cortical anatomy and gene expression in patients. Taken together, the methods, resources, and findings described here advance our understanding of human cortical organization and offer flexible bridges to connect scientific fields operating at different spatial scales of human brain research.


Subject(s)
Brain , Cerebral Cortex , Humans , Cerebral Cortex/physiology , Brain/metabolism , Neuroimaging/methods , Mental Processes , Biology , Brain Mapping/methods
17.
JAMA Psychiatry ; 81(5): 456-467, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38353984

ABSTRACT

Importance: Brain aging elicits complex neuroanatomical changes influenced by multiple age-related pathologies. Understanding the heterogeneity of structural brain changes in aging may provide insights into preclinical stages of neurodegenerative diseases. Objective: To derive subgroups with common patterns of variation in participants without diagnosed cognitive impairment (WODCI) in a data-driven manner and relate them to genetics, biomedical measures, and cognitive decline trajectories. Design, Setting, and Participants: Data acquisition for this cohort study was performed from 1999 to 2020. Data consolidation and harmonization were conducted from July 2017 to July 2021. Age-specific subgroups of structural brain measures were modeled in 4 decade-long intervals spanning ages 45 to 85 years using a deep learning, semisupervised clustering method leveraging generative adversarial networks. Data were analyzed from July 2021 to February 2023 and were drawn from the Imaging-Based Coordinate System for Aging and Neurodegenerative Diseases (iSTAGING) international consortium. Individuals WODCI at baseline spanning ages 45 to 85 years were included, with greater than 50 000 data time points. Exposures: Individuals WODCI at baseline scan. Main Outcomes and Measures: Three subgroups, consistent across decades, were identified within the WODCI population. Associations with genetics, cardiovascular risk factors (CVRFs), amyloid ß (Aß), and future cognitive decline were assessed. Results: In a sample of 27 402 individuals (mean [SD] age, 63.0 [8.3] years; 15 146 female [55%]) WODCI, 3 subgroups were identified in contrast with the reference group: a typical aging subgroup, A1, with a specific pattern of modest atrophy and white matter hyperintensity (WMH) load, and 2 accelerated aging subgroups, A2 and A3, with characteristics that were more distinct at age 65 years and older. A2 was associated with hypertension, WMH, and vascular disease-related genetic variants and was enriched for Aß positivity (ages ≥65 years) and apolipoprotein E (APOE) ε4 carriers. A3 showed severe, widespread atrophy, moderate presence of CVRFs, and greater cognitive decline. Genetic variants associated with A1 were protective for WMH (rs7209235: mean [SD] B = -0.07 [0.01]; P value = 2.31 × 10-9) and Alzheimer disease (rs72932727: mean [SD] B = 0.1 [0.02]; P value = 6.49 × 10-9), whereas the converse was observed for A2 (rs7209235: mean [SD] B = 0.1 [0.01]; P value = 1.73 × 10-15 and rs72932727: mean [SD] B = -0.09 [0.02]; P value = 4.05 × 10-7, respectively); variants in A3 were associated with regional atrophy (rs167684: mean [SD] B = 0.08 [0.01]; P value = 7.22 × 10-12) and white matter integrity measures (rs1636250: mean [SD] B = 0.06 [0.01]; P value = 4.90 × 10-7). Conclusions and Relevance: The 3 subgroups showed distinct associations with CVRFs, genetics, and subsequent cognitive decline. These subgroups likely reflect multiple underlying neuropathologic processes and affect susceptibility to Alzheimer disease, paving pathways toward patient stratification at early asymptomatic stages and promoting precision medicine in clinical trials and health care.


Subject(s)
Aging , Brain , Humans , Aged , Female , Male , Middle Aged , Aged, 80 and over , Brain/diagnostic imaging , Brain/pathology , Aging/genetics , Aging/physiology , Cognitive Dysfunction/genetics , Cognitive Dysfunction/physiopathology , Cognitive Dysfunction/diagnostic imaging , Magnetic Resonance Imaging , Cohort Studies , Deep Learning
18.
J Neurosci Methods ; 404: 110076, 2024 04.
Article in English | MEDLINE | ID: mdl-38331258

ABSTRACT

BACKGROUND: Resting-state functional connectivity (RSFC) analysis with widefield optical imaging (WOI) is a potentially powerful tool to develop imaging biomarkers in mouse models of disease before translating them to human neuroimaging with functional magnetic resonance imaging (fMRI). The delineation of such biomarkers depends on rigorous statistical analysis. However, statistical understanding of WOI data is limited. In particular, cluster-based analysis of neuroimaging data depends on assumptions of spatial stationarity (i.e., that the distribution of cluster sizes under the null is equal at all brain locations). Whether actual data deviate from this assumption has not previously been examined in WOI. NEW METHOD: In this manuscript, we characterize the effects of spatial nonstationarity in WOI RSFC data and adapt a "two-pass" technique from fMRI to correct cluster sizes and mitigate spatial bias, both parametrically and nonparametrically. These methods are tested on multi-institutional data. RESULTS AND COMPARISON WITH EXISTING METHODS: We find that spatial nonstationarity has a substantial effect on inference in WOI RSFC data with false positives much more likely at some brain regions than others. This pattern of bias varies between imaging systems, contrasts, and mouse ages, all of which could affect experimental reproducibility if not accounted for. CONCLUSIONS: Both parametric and nonparametric corrections for nonstationarity result in significant improvements in spatial bias. The proposed methods are simple to implement and will improve the robustness of inference in optical neuroimaging data.


Subject(s)
Brain Mapping , Brain , Animals , Humans , Mice , Biomarkers , Brain/diagnostic imaging , Brain Mapping/methods , Magnetic Resonance Imaging/methods , Optical Imaging , Reproducibility of Results , Multicenter Studies as Topic
19.
Sci Rep ; 14(1): 4922, 2024 02 28.
Article in English | MEDLINE | ID: mdl-38418494

ABSTRACT

Glioblastoma is a highly heterogeneous disease, with variations observed at both phenotypical and molecular levels. Personalized therapies would be facilitated by non-invasive in vivo approaches for characterizing this heterogeneity. In this study, we developed unsupervised joint machine learning between radiomic and genomic data, thereby identifying distinct glioblastoma subtypes. A retrospective cohort of 571 IDH-wildtype glioblastoma patients were included in the study, and pre-operative multi-parametric MRI scans and targeted next-generation sequencing (NGS) data were collected. L21-norm minimization was used to select a subset of 12 radiomic features from the MRI scans, and 13 key driver genes from the five main signal pathways most affected in glioblastoma were selected from the genomic data. Subtypes were identified using a joint learning approach called Anchor-based Partial Multi-modal Clustering on both radiomic and genomic modalities. Kaplan-Meier analysis identified three distinct glioblastoma subtypes: high-risk, medium-risk, and low-risk, based on overall survival outcome (p < 0.05, log-rank test; Hazard Ratio = 1.64, 95% CI 1.17-2.31, Cox proportional hazard model on high-risk and low-risk subtypes). The three subtypes displayed different phenotypical and molecular characteristics in terms of imaging histogram, co-occurrence of genes, and correlation between the two modalities. Our findings demonstrate the synergistic value of integrated radiomic signatures and molecular characteristics for glioblastoma subtyping. Joint learning on both modalities can aid in better understanding the molecular basis of phenotypical signatures of glioblastoma, and provide insights into the biological underpinnings of tumor formation and progression.


Subject(s)
Brain Neoplasms , Glioblastoma , Humans , Glioblastoma/diagnostic imaging , Glioblastoma/genetics , Retrospective Studies , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/genetics , Prognosis , Magnetic Resonance Imaging/methods , Genomics
20.
Am Heart J ; 271: 156-163, 2024 May.
Article in English | MEDLINE | ID: mdl-38412896

ABSTRACT

BACKGROUND: There are no consensus guidelines defining optimal timing for the Fontan operation, the last planned surgery in staged palliation for single-ventricle heart disease. OBJECTIVES: Identify patient-level characteristics, center-level variation, and secular trends driving Fontan timing. METHODS: A retrospective observational study of subjects who underwent Fontan from 2007 to 2021 at centers in the Pediatric Health Information Systems database was performed using linear mixed-effects modeling in which age at Fontan was regressed on patient characteristics and date of operation with center as random effect. RESULTS: We included 10,305 subjects (40.4% female, 44% non-white) at 47 centers. Median age at Fontan was 3.4 years (IQR 2.6-4.4). Hypoplastic left heart syndrome (-4.4 months, 95%CI -5.5 to -3.3) and concomitant conditions (-2.6 months, 95%CI -4.1 to -1.1) were associated with younger age at Fontan. Subjects with technology-dependence (+4.6 months, 95%CI 3.1-6.1) were older at Fontan. Black (+4.1 months, 95%CI 2.5-5.7) and Asian (+8.3 months, 95%CI 5.4-11.2) race were associated with older age at Fontan. There was significant variation in Fontan timing between centers. Center accounted for 10% of variation (ICC 0.10, 95%CI 0.07-0.14). Center surgical volume was not associated with Fontan timing (P = .21). Operation year was associated with age at Fontan, with a 3.1 month increase in age for every 5 years (+0.61 months, 95%CI 0.48-0.75). CONCLUSIONS: After adjusting for patient-level characteristics there remains significant inter-center variation in Fontan timing. Age at Fontan has increased. Future studies addressing optimal Fontan timing are warranted.


Subject(s)
Fontan Procedure , Heart Defects, Congenital , Child , Child, Preschool , Female , Humans , Infant , Male , Age Factors , Databases, Factual , Fontan Procedure/methods , Health Information Systems , Heart Defects, Congenital/surgery , Hypoplastic Left Heart Syndrome/surgery , Retrospective Studies , Time Factors , Time-to-Treatment/statistics & numerical data , United States/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...