Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Pharm Bull (Tokyo) ; 66(6): 642-650, 2018 Jun 01.
Article in English | MEDLINE | ID: mdl-29618669

ABSTRACT

Genus Dendrobium (Orchidaceae) contains numerous species. Phylogenetic analyses based on morphological characteristics and DNA sequences indicated that this genus is divided into two major groups: Asian and Australasian clades. On the other hand, little is known about the phytochemical differences and similarities among the species in each clade. In this study, we selected 18 Dendrobium species (11 from the Asian clade and 7 from the Australasian clade) and constructed HPLC profiles, arrays composed of relative intensity of the chromatographic peaks. Next, orthogonal partial least square discriminant analysis (OPLS-DA) was applied to the profile matrix to classify Dendrobium species into the Asian and Australasian clades in order to identify the peaks that significantly contribute to the class separation. In the end, two phenanthrenes, 4,9-dimethoxyphenanthrene-2,5-diol 1 and 1,5-dimethoxyphenanthrene-2,7-diol 2, which contributed to the class separation, were isolated from the HPLC peaks. The existence of 2 was limited to the genetically related Australasian species.


Subject(s)
Dendrobium/chemistry , Phenanthrenes/analysis , Plant Extracts/analysis , Australasia , Chromatography, High Pressure Liquid , Multivariate Analysis , Species Specificity
2.
AoB Plants ; 62014 Aug 07.
Article in English | MEDLINE | ID: mdl-25107672

ABSTRACT

It is always difficult to construct coherent classification systems for plant lineages having diverse morphological characters. The genus Dendrobium, one of the largest genera in the Orchidaceae, includes ∼1100 species, and enormous morphological diversification has hindered the establishment of consistent classification systems covering all major groups of this genus. Given the particular importance of species in Dendrobium section Dendrobium and allied groups as floriculture and crude drug genetic resources, there is an urgent need to establish a stable classification system. To clarify phylogenetic relationships in Dendrobium section Dendrobium and allied groups, we analysed the macromolecular characters of the group. Phylogenetic analyses of 210 taxa of Dendrobium were conducted on DNA sequences of internal transcribed spacer (ITS) regions of 18S-26S nuclear ribosomal DNA and the maturase-coding gene (matK) located in an intron of the plastid gene trnK using maximum parsimony and Bayesian methods. The parsimony and Bayesian analyses revealed 13 distinct clades in the group comprising section Dendrobium and its allied groups. Results also showed paraphyly or polyphyly of sections Amblyanthus, Aporum, Breviflores, Calcarifera, Crumenata, Dendrobium, Densiflora, Distichophyllae, Dolichocentrum, Holochrysa, Oxyglossum and Pedilonum. On the other hand, the monophyly of section Stachyobium was well supported. It was found that many of the morphological characters that have been believed to reflect phylogenetic relationships are, in fact, the result of convergence. As such, many of the sections that have been recognized up to this point were found to not be monophyletic, so recircumscription of sections is required.

3.
Biol Pharm Bull ; 34(5): 779-82, 2011.
Article in English | MEDLINE | ID: mdl-21532173

ABSTRACT

Stems of genus Dendrobium (Orchidaceae) have been traditionally used as an herbal medicine (Dendrobii Herba) in Eastern Asia. Although demand for Dendrobium is increasing rapidly, wild resources are decreasing due to over-collection. This study aimed to identify plant sources of Dendrobii Herba on the market based on sequences of the internal transcribed spacer (ITS) regions of nuclear ribosomal DNA. We constructed an ITS1-5.8S-ITS2 sequence database of 196 Dendrobium species, and the database was employed to identify 21 herbal samples. We found that 13 Dendrobium species (D. catenatum, D. cucullatum, D. denudans, D. devonianum, D. eriiflorum, D. hancockii, D. linawianum, D. lituiflorum, D. loddigesii, D. polyanthum, D. primulinum, D. regium, and D. transparens) were possibly used as plant sources of Dendrobii Herba, and unidentified species allied to D. denudans, D. eriiflorum, D. gregulus, or D. hemimelanoglossum were also used as sources. Furthermore, it is clear that D. catenatum is one of the most important sources of Dendrobii Herba (5 out of 21 samples).


Subject(s)
DNA, Ribosomal/drug effects , Dendrobium/chemistry , Herbal Medicine , Base Sequence , DNA Primers , Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...