Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Digit Health ; 5: 1193467, 2023.
Article in English | MEDLINE | ID: mdl-37588022

ABSTRACT

Introduction: The SARS-CoV-2 (COVID-19) pandemic has created substantial health and economic burdens in the US and worldwide. As new variants continuously emerge, predicting critical clinical events in the context of relevant individual risks is a promising option for reducing the overall burden of COVID-19. This study aims to train an AI-driven decision support system that helps build a model to understand the most important features that predict the "mortality" of patients hospitalized with COVID-19. Methods: We conducted a retrospective analysis of "5,371" patients hospitalized for COVID-19-related symptoms from the South Florida Memorial Health Care System between March 14th, 2020, and January 16th, 2021. A data set comprising patients' sociodemographic characteristics, pre-existing health information, and medication was analyzed. We trained Random Forest classifier to predict "mortality" for patients hospitalized with COVID-19. Results: Based on the interpretability of the model, age emerged as the primary predictor of "mortality", followed by diarrhea, diabetes, hypertension, BMI, early stages of kidney disease, smoking status, sex, pneumonia, and race in descending order of importance. Notably, individuals aged over 65 years (referred to as "older adults"), males, Whites, Hispanics, and current smokers were identified as being at higher risk of death. Additionally, BMI, specifically in the overweight and obese categories, significantly predicted "mortality". These findings indicated that the model effectively learned from various categories, such as patients' sociodemographic characteristics, pre-hospital comorbidities, and medications, with a predominant focus on characterizing pre-hospital comorbidities. Consequently, the model demonstrated the ability to predict "mortality" with transparency and reliability. Conclusion: AI can potentially provide healthcare workers with the ability to stratify patients and streamline optimal care solutions when time is of the essence and resources are limited. This work sets the platform for future work that forecasts patient responses to treatments at various levels of disease severity and assesses health disparities and patient conditions that promote improved health care in a broader context. This study contributed to one of the first predictive analyses applying AI/ML techniques to COVID-19 data using a vast sample from South Florida.

2.
J Big Data ; 8(1): 101, 2021.
Article in English | MEDLINE | ID: mdl-34306963

ABSTRACT

Natural Language Processing (NLP) is one of the most captivating applications of Deep Learning. In this survey, we consider how the Data Augmentation training strategy can aid in its development. We begin with the major motifs of Data Augmentation summarized into strengthening local decision boundaries, brute force training, causality and counterfactual examples, and the distinction between meaning and form. We follow these motifs with a concrete list of augmentation frameworks that have been developed for text data. Deep Learning generally struggles with the measurement of generalization and characterization of overfitting. We highlight studies that cover how augmentations can construct test sets for generalization. NLP is at an early stage in applying Data Augmentation compared to Computer Vision. We highlight the key differences and promising ideas that have yet to be tested in NLP. For the sake of practical implementation, we describe tools that facilitate Data Augmentation such as the use of consistency regularization, controllers, and offline and online augmentation pipelines, to preview a few. Finally, we discuss interesting topics around Data Augmentation in NLP such as task-specific augmentations, the use of prior knowledge in self-supervised learning versus Data Augmentation, intersections with transfer and multi-task learning, and ideas for AI-GAs (AI-Generating Algorithms). We hope this paper inspires further research interest in Text Data Augmentation.

3.
J Big Data ; 8(1): 18, 2021.
Article in English | MEDLINE | ID: mdl-33457181

ABSTRACT

This survey explores how Deep Learning has battled the COVID-19 pandemic and provides directions for future research on COVID-19. We cover Deep Learning applications in Natural Language Processing, Computer Vision, Life Sciences, and Epidemiology. We describe how each of these applications vary with the availability of big data and how learning tasks are constructed. We begin by evaluating the current state of Deep Learning and conclude with key limitations of Deep Learning for COVID-19 applications. These limitations include Interpretability, Generalization Metrics, Learning from Limited Labeled Data, and Data Privacy. Natural Language Processing applications include mining COVID-19 research for Information Retrieval and Question Answering, as well as Misinformation Detection, and Public Sentiment Analysis. Computer Vision applications cover Medical Image Analysis, Ambient Intelligence, and Vision-based Robotics. Within Life Sciences, our survey looks at how Deep Learning can be applied to Precision Diagnostics, Protein Structure Prediction, and Drug Repurposing. Deep Learning has additionally been utilized in Spread Forecasting for Epidemiology. Our literature review has found many examples of Deep Learning systems to fight COVID-19. We hope that this survey will help accelerate the use of Deep Learning for COVID-19 research.

SELECTION OF CITATIONS
SEARCH DETAIL
...