Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 15(51): 59876-59886, 2023 Dec 27.
Article in English | MEDLINE | ID: mdl-38105477

ABSTRACT

As an advanced sensing technology, dual-mode flexible sensing, integrating both tactile and touchless perception, propels numerous intelligent devices toward a more practical and efficient direction. The ability to incorporate multiple sensing modes and accurately distinguish them in real time has become crucial for technological advancements. Here, we proposed a dual-mode sensing system (B-MIGS) consisting of a dual-layer sensing device with a magnetically induced grid structure and a testing device. The system was capable of utilizing mechanical pressure to perceive tactile stimulation and magnetic sensing to simultaneously transduce touchless stimulation simultaneously. By leveraging the triboelectric effect, the decoupling of tactile and touchless signals in the presence of unknown signal sources was achieved. Additionally, the sensing characteristics of the B-MIGS were optimized by varying the curing magnetic induction intensity and magnetic particle concentration. The influence of the temperature and humidity on the sensing signals was also discussed. Finally, the practical value of the B-MIGS as a dual-mode monitoring system was demonstrated on soft petals and sensor arrays, along with exploration of its potential application in underwater environments.

2.
Int J Mol Sci ; 24(10)2023 May 11.
Article in English | MEDLINE | ID: mdl-37239958

ABSTRACT

In this study, we successfully prepared core-shell heterostructured nanocomposites (Fe NWs@SiO2), with ferromagnetic nanowires (Fe NWs) as the core and silica (SiO2) as the shell. The composites exhibited enhanced electromagnetic wave absorption and oxidation resistance and were synthesized using a simple liquid-phase hydrolysis reaction. We tested and analyzed the microwave absorption properties of Fe NWs@SiO2 composites with varied filling rates (mass fractions of 10 wt%, 30 wt%, and 50 wt% after mixing with paraffin). The results showed that the sample filled with 50 wt% had the best comprehensive performance. At the matching thickness of 7.25 mm, the minimum reflection loss (RLmin) could reach -54.88 dB at 13.52 GHz and the effective absorption bandwidth (EAB, RL < -10 dB) could reach 2.88 GHz in the range of 8.96-17.12 GHz. Enhanced microwave absorption performance of the core-shell structured Fe NWs@SiO2 composites could be attributed to the magnetic loss of the composite, the core-shell heterogeneous interface polarization effect, and the small-scale effect induced by the one-dimensional structure. Theoretically, this research provided Fe NWs@SiO2 composites with highly absorbent and antioxidant core-shell structures for future practical applications.


Subject(s)
Nanowires , Silicon Dioxide , Absorption, Radiation , Iron , Microwaves
3.
Sensors (Basel) ; 22(20)2022 Oct 14.
Article in English | MEDLINE | ID: mdl-36298177

ABSTRACT

The stable operation of climbing robots exposed to high winds is of great significance for the health-monitoring of structures. This study proposes an anole lizard-like climbing robot inspired by its superior wind resistance. First, the stability mechanism of the anole lizard body in adhesion and desorption is investigated by developing adhesion and desorption models, respectively. Then, the hypothesis that the anole lizard improves its adhesion and stability performance through abdominal adjustment and trunk swing is tested by developing a simplified body model and kinematic model. After that, the structures of the toe, limb, and multi-stage flexible torso of the anole lizard-like climbing robot are designed. Subsequently, the aerodynamic behavior of the proposed robot under high-speed airflow are investigated using finite element analysis. The results show that when there is no obstacle, the climbing robot generates the normal force to enhance toepad friction and adhesion by tuning the abdomen's shape to create an air pressure difference between the back and abdomen. When there is an obstacle, a component force is obtained through periodic oscillation of the spine and tail to resist the frontal winds resulting from the vortex paths generated by the airflow behind the obstacle. These results confirm that the proposed hypothesis is correct. Finally, the adhesion and wind resistance performance of the anole lizard-like climbing robot is tested through the developed experimental platform. It is found that the adhesion force is equal to 50 N when the pre-pressure is 20 N. Further, it is shown that the normal pressure of the proposed robot can reach 76.6% of its weight in a high wind of 14 m/s.


Subject(s)
Lizards , Animals , Wind , Biomechanical Phenomena , Extremities
SELECTION OF CITATIONS
SEARCH DETAIL