Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 139
Filter
1.
J Cell Physiol ; : e31364, 2024 Aug 11.
Article in English | MEDLINE | ID: mdl-39129208

ABSTRACT

High mobility group protein B1 (HMGB1) acts as a pathogenic inflammatory response to mediate ranges of conditions such as epilepsy, septic shock, ischemia, traumatic brain injury, Parkinson's disease, Alzheimer's disease and mass spectrometry. HMGB1 promotes inflammation during sterile and infectious damage and plays a crucial role in disease development. Mobilization from the nucleus to the cytoplasm is the first important step in the release of HMGB1 from activated immune cells. Here, we demonstrated that Sirtuin 2 (SIRT2) physically interacts with and deacetylates HMGB1 at 43 lysine residue at nuclear localization signal locations, strengthening its interaction with HMGB1 and causing HMGB1 to be localized in the cytoplasm. These discoveries are the first to shed light on the SIRT2 nucleoplasmic shuttle, which influences HMGB1 and its degradation, hence revealing novel therapeutic targets and avenues for neuroinflammation treatment.

2.
J Exp Clin Cancer Res ; 43(1): 248, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39215364

ABSTRACT

BACKGROUND: High expression of ubiquitin ligase MDM2 is a primary cause of p53 inactivation in many tumors, making it a promising therapeutic target. However, MDM2 inhibitors have failed in clinical trials due to p53-induced feedback that enhances MDM2 expression. This underscores the urgent need to find an effective adaptive genotype or combination of targets. METHODS: Kinome-wide CRISPR/Cas9 knockout screen was performed to identify genes that modulate the response to MDM2 inhibitor using TP53 wild type cancer cells and found ULK1 as a candidate. The MTT cell viability assay, flow cytometry and LDH assay were conducted to evaluate the activation of pyroptosis and the synthetic lethality effects of combining ULK1 depletion with p53 activation. Dual-luciferase reporter assay and ChIP-qPCR were performed to confirm that p53 directly mediates the transcription of GSDME and to identify the binding region of p53 in the promoter of GSDME. ULK1 knockout / overexpression cells were constructed to investigate the functional role of ULK1 both in vitro and in vivo. The mechanism of ULK1 depletion to activate GSMDE was mainly investigated by qPCR, western blot and ELISA. RESULTS: By using high-throughput screening, we identified ULK1 as a synthetic lethal gene for the MDM2 inhibitor APG115. It was determined that deletion of ULK1 significantly increased the sensitivity, with cells undergoing typical pyroptosis. Mechanistically, p53 promote pyroptosis initiation by directly mediating GSDME transcription that induce basal-level pyroptosis. Moreover, ULK1 depletion reduces mitophagy, resulting in the accumulation of damaged mitochondria and subsequent increasing of reactive oxygen species (ROS). This in turn cleaves and activates GSDME via the NLRP3-Caspase inflammatory signaling axis. The molecular cascade makes ULK1 act as a crucial regulator of pyroptosis initiation mediated by p53 activation cells. Besides, mitophagy is enhanced in platinum-resistant tumors, and ULK1 depletion/p53 activation has a synergistic lethal effect on these tumors, inducing pyroptosis through GSDME directly. CONCLUSION: Our research demonstrates that ULK1 deficiency can synergize with MDM2 inhibitors to induce pyroptosis. p53 plays a direct role in activating GSDME transcription, while ULK1 deficiency triggers upregulation of the ROS-NLRP3 signaling pathway, leading to GSDME cleavage and activation. These findings underscore the pivotal role of p53 in determining pyroptosis and provide new avenues for the clinical application of p53 restoration therapies, as well as suggesting potential combination strategies.


Subject(s)
Autophagy-Related Protein-1 Homolog , Pyroptosis , Reactive Oxygen Species , Signal Transduction , Tumor Suppressor Protein p53 , Humans , Tumor Suppressor Protein p53/metabolism , Tumor Suppressor Protein p53/genetics , Autophagy-Related Protein-1 Homolog/metabolism , Autophagy-Related Protein-1 Homolog/genetics , Mice , Reactive Oxygen Species/metabolism , Animals , Up-Regulation , Synthetic Lethal Mutations , Female , Intracellular Signaling Peptides and Proteins/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Cell Line, Tumor , NLR Family, Pyrin Domain-Containing 3 Protein
3.
Front Pharmacol ; 15: 1400981, 2024.
Article in English | MEDLINE | ID: mdl-39092226

ABSTRACT

Much research describes gut microbiota in atherosclerotic cardiovascular diseases (ASCVD) for that the composition of the intestinal microbiome or its metabolites can directly participate in the development of endothelial dysfunction, atherosclerosis and its adverse complications. Salidroside, a natural phenylpropane glycoside, exhibits promising biological activity against the progression of ASCVD. Recent studies suggested that the gut microbiota played a crucial role in mediating the diverse beneficial effects of salidroside on health. Here, we describe the protective effects of salidroside against the progression of atherosclerosis. Salidroside regulates the abundance of gut microbiotas and gut microbe-dependent metabolites. Moreover, salidroside improves intestinal barrier function and maintains intestinal epithelial barrier function integrity. In addition, salidroside attenuates the inflammatory responses exacerbated by gut microbiota disturbance. This review delves into how salidroside functions to ameliorate atherosclerosis by focusing on its interaction with gut microbiota, uncovering the potential roles of gut microbiota in the diverse biological impacts of salidroside.

4.
Nano Lett ; 24(27): 8418-8426, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38934472

ABSTRACT

Optical multiplexing technology plays a crucial role in various fields such as data storage, anti-counterfeiting, and time-resolved biological imaging. Nevertheless, employing single-wavelength phosphorescence for multiplexing often results in spectral overlap among the emission peaks of various channels, which can precipitate crosstalk and misinterpretation in the information-decoding process, thereby compromising the integrity and precision of the encrypted data. This paper proposes a time-divided colorful multiplexing technology based on phosphorescent carbon nanodots with different colors and lifetimes. Using different luminescence colors to symbolize varying information levels helps achieve multitiered information encryption and storage. By modulation of the lifetime and the emission wavelength, intricate information can be encoded, thereby enhancing the intricacy and security of the encryption mechanism. By assigning different data bits to each color, more information can be encoded in the same physical space. This method enables higher-density information storage and fortifies encryption, ensuring the compactness and security of information.

5.
Environ Sci Pollut Res Int ; 31(26): 38367-38384, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38805134

ABSTRACT

This study adopts a new approach to reassess the factors influencing urban energy intensity in China. Initially, the factors impacting energy intensity are classified into controllable and uncontrollable categories. Subsequently, employing a single-factor multi-stage method combined with the Adaboost method, 289 Chinese cities are categorized based on uncontrollable factors to eliminate the influence of inherent differences on energy intensity. Finally, panel data regression analyses are conducted using data from 289 Chinese cities between 2005 and 2016, individually for each city type, to evaluate the extent to which controllable factors contribute to energy intensity. The findings indicate that (1) heightened energy prices, an increased share of electricity consumption, and a greater proportion of centralized heating significantly influence the reduction of energy intensity across all city types; (2) to optimize energy consumption, each city type should adopt specific strategies. For instance, cities located in resource-rich heating regions with low economic outputs can reduce their energy intensity by increasing electricity consumption, while cities with high economic outputs can decrease their energy intensity by increasing natural gas consumption. The findings of this study carry substantial implications for the Chinese government in shaping targeted energy policies tailored to different city types.


Subject(s)
Cities , China , Electricity , Energy-Generating Resources , Natural Gas
6.
Ecotoxicol Environ Saf ; 276: 116317, 2024 May.
Article in English | MEDLINE | ID: mdl-38615641

ABSTRACT

We have previously shown that excessive activation of macrophage proinflammatory activity plays a key role in TCE-induced immune liver injury, but the mechanism of polarization is unclear. Recent studies have shown that TLR9 activation plays an important regulatory role in macrophage polarization. In the present study, we demonstrated that elevated levels of oxidative stress in hepatocytes mediate the release of mtDNA into the bloodstream, leading to the activation of TLR9 in macrophages to regulate macrophage polarization. In vivo experiments revealed that pretreatment with SS-31, a mitochondria-targeting antioxidant peptide, reduced the level of oxidative stress in hepatocytes, leading to a decrease in mtDNA release. Importantly, SS-31 pretreatment inhibited TLR9 activation in macrophages, suggesting that hepatocyte mtDNA may activate TLR9 in macrophages. Further studies revealed that pharmacological inhibition of TLR9 by ODN2088 partially blocked macrophage activation, suggesting that the level of macrophage activation is dependent on TLR9 activation. In vitro experiments involving the extraction of mtDNA from TCE-sensitized mice treated with RAW264.7 cells further confirmed that hepatocyte mtDNA can activate TLR9 in mouse peritoneal macrophages, leading to macrophage polarization. In summary, our study comprehensively confirmed that TLR9 activation in macrophages is dependent on mtDNA released by elevated levels of oxidative stress in hepatocytes and that TLR9 activation in macrophages plays a key role in regulating macrophage polarization. These findings reveal the mechanism of macrophage activation in TCE-induced immune liver injury and provide new perspectives and therapeutic targets for the treatment of OMDT-induced immune liver injury.


Subject(s)
DNA, Mitochondrial , Hepatocytes , Oxidative Stress , Toll-Like Receptor 9 , Trichloroethylene , Animals , Mice , Hepatocytes/drug effects , Trichloroethylene/toxicity , Toll-Like Receptor 9/metabolism , Oxidative Stress/drug effects , Macrophages/drug effects , Macrophages/immunology , RAW 264.7 Cells , Chemical and Drug Induced Liver Injury , Macrophage Activation/drug effects , Male , Mice, Inbred C57BL
7.
Carbohydr Res ; 539: 109120, 2024 May.
Article in English | MEDLINE | ID: mdl-38669825

ABSTRACT

Xanthoceras sorbifolium Bunge, also known as Tu-Mu-Gua and Wen-Dan-Ge-Zi, has several applications. Clinical data and experimental studies have shown anti-tumor, anti-inflammatory, anti-bacterial, and anti-oxidant properties of Xanthoceras sorbifolium Bunge that inhibits prostate hyperplasia, lowers blood pressure and lipid level, and treats enuresis and urinary incontinence. It also has neuroprotective effects and can treat Alzheimer's disease and Parkinson's syndrome. The research on the chemical composition and pharmacological effects of Xanthoceras sorbifolium Bunge has been increasing. Triterpenoid and triterpenoid saponins are the main constituents in Xanthoceras sorbifolium Bunge and exhibit biological activities. In this review, we summarized the research progress on triterpenoids and their glycosides in Xanthoceras sorbifolia, including the chemical constituents, pharmacological activities, and biogenic pathways of triterpenoid mother nucleus. The results would provide a reference for further research and development of triterpenoids and their glycosides in Xanthoceras sorbifolia.


Subject(s)
Saponins , Triterpenes , Saponins/chemistry , Saponins/pharmacology , Saponins/isolation & purification , Triterpenes/chemistry , Triterpenes/pharmacology , Triterpenes/isolation & purification , Humans , Sapindaceae/chemistry , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/isolation & purification
8.
Angew Chem Int Ed Engl ; 63(23): e202403585, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38565432

ABSTRACT

In spite of the competitive performance at room temperature, the development of sodium-ion batteries (SIBs) is still hindered by sluggish electrochemical reaction kinetics and unstable electrode/electrolyte interphase under subzero environments. Herein, a low-concentration electrolyte, consisting of 0.5M NaPF6 dissolving in diethylene glycol dimethyl ether solvent, is proposed for SIBs working at low temperature. Such an electrolyte generates a thin, amorphous, and homogeneous cathode/electrolyte interphase at low temperature. The interphase is monolithic and rich in organic components, reducing the limitation of Na+ migration through inorganic crystals, thereby facilitating the interfacial Na+ dynamics at low temperature. Furthermore, it effectively blocks the unfavorable side reactions between active materials and electrolytes, improving the structural stability. Consequently, Na0.7Li0.03Mg0.03Ni0.27Mn0.6Ti0.07O2//Na and hard carbon//Na cells deliver a high capacity retention of 90.8 % after 900 cycles at 1C, a capacity over 310 mAh g-1 under -30 °C, respectively, showing long-term cycling stability and great rate capability at low temperature.

10.
Article in English | MEDLINE | ID: mdl-38619962

ABSTRACT

Graph convolutional networks (GCNs) have been widely used in skeleton-based action recognition. However, existing approaches are limited in fine-grained action recognition due to the similarity of interclass data. Moreover, the noisy data from pose extraction increase the challenge of fine-grained recognition. In this work, we propose a flexible attention block called channel-variable spatial-temporal attention (CVSTA) to enhance the discriminative power of spatial-temporal joints and obtain a more compact intraclass feature distribution. Based on CVSTA, we construct a multidimensional refinement GCN (MDR-GCN) that can improve the discrimination among channel-, joint-, and frame-level features for fine-grained actions. Furthermore, we propose a robust decouple loss (RDL) that significantly boosts the effect of the CVSTA and reduces the impact of noise. The proposed method combining MDR-GCN with RDL outperforms the known state-of-the-art skeleton-based approaches on fine-grained datasets, FineGym99 and FSD-10, and also on the coarse NTU-RGB + D 120 dataset and NTU-RGB + D X-view version. Our code is publicly available at https://github.com/dingyn-Reno/MDR-GCN.

11.
Asian J Surg ; 47(5): 2200-2205, 2024 May.
Article in English | MEDLINE | ID: mdl-38443253

ABSTRACT

BACKGROUND: Labiaplasty is one of the top cosmetic procedures patients are seeking in the past two years. However, treatment of disease in posterior fourchette caused by various etiological factors was less investigated and neglected. METHODS: Three types of posterior fourchette deformity were proposed: (1) Redundant posterior fourchette, (2) Relaxed posterior fourchette, and (3) Constricted posterior fourchette. Local flap transfer technique was applied. Y-V-plasty and 5-Z-Flap-plasty were used to treat web type and tight type of the constricted posterior fourchette, respectively. Follow-ups were arranged on the Internet or at the outpatient clinic. Visual analogue scale (VAS) was utilized to evaluate sexual discomfort in the satisfaction questionnaires during follow-up. RESULTS: A total of 48 patients with constricted posterior fourchette deformity from May 2022 to May 2023 were reviewed in the study. Y-V-plasty could decrease VAS in patients with web-type deformity by 4.13 ± 1.46 (p<0.001). 5-Z-Flap-plasty could decrease VAS in patients with tight-type deformity by 3.76 ± 1.53 (p<0.05). Satisfaction rates of the web type and tight type were 93.1% (27/29) and 86.7% (13/15) respectively. Complications include two cases of hematoma, one case of persistent pain and two cases of dehiscence. CONCLUSION: Constricted posterior fourchette seriously affects the quality of life. Y-V-plasty and 5-Z-Flap-plasty can be utilized to treat the two subtypes of constricted posterior fourchette, which can effectively reduce the pain score of patients with high satisfaction and few long-term complications.


Subject(s)
Patient Satisfaction , Plastic Surgery Procedures , Surgical Flaps , Vulva , Humans , Female , Adult , Vulva/surgery , Vulva/abnormalities , Plastic Surgery Procedures/methods , Treatment Outcome , Middle Aged , Follow-Up Studies , Young Adult , Gynecologic Surgical Procedures/methods
12.
Foods ; 13(6)2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38540860

ABSTRACT

This study investigated the effects of dough proofing degree (1.1, 1.3, 1.5, and 1.7 mL/g) and carboxymethyl cellulose sodium (CMC-Na) on the quality of frozen dough steamed bread (FDSB). As the dough proofing degree was increased from 1.1 to 1.7 mL/g, the specific volume of FDSB initially increased and then decreased, with the maximum at 1.3 mL/g, and then dramatically decreased at 1.5 and 1.7 mL/g, accompanied by a harder texture and secession of crust and crumb, which were the detrimental effects brought by over-proofing. The optimal amount of CMC-Na effectively alleviated the deterioration associated with over-proofing, and the proofing tolerance of FDSB was increased from 1.3 mL/g to 1.7 mL/g. Fermentation analysis showed that CMC-Na significantly improved the extensibility and gas-holding capacity of the dough by increasing the maximum height of the dough (Hm) and the emergence time (T1) of Hm. Frequency sweep tests indicated that CMC-Na improved the plasticity of proofed dough by increasing loss factor tan δ. Significant reductions were found in peak viscosity and complex modulus G* in pasting properties tests and temperature sweep measurements, respectively, suggesting that CMC-Na influenced starch gelatinization and dough stiffening during steaming, which promoted the extension of the network structure, thus facilitating gas expansion and diffusion. These property changes theoretically explained the improvement in the proofing tolerance of FDSB by CMC-Na.

13.
Front Oncol ; 14: 1308493, 2024.
Article in English | MEDLINE | ID: mdl-38410105

ABSTRACT

Background: Ectopic tissue is rarely found in the bladder for adults. Currently, there have been reports of ectopic prostate and colon tissue in the bladder. These ectopic tissues are manifested as a bladder mass and cause lower urinary tract symptoms. However, the ectopic corpus cavernosum in the bladder has never been reported, and its clinical characteristics and treatment have not been explored yet. Case summary: A 3-year-old boy was admitted to the hospital due to 1 month of urinary frequency. The physical examination was unremarkable. Urine analysis from other hospitals showed an elevated urine white blood cell count of 17.9/ul. In addition, ultrasound indicated a possible bladder mass. CT and MRI showed a well-margined lesion (1.9×1.9 cm) in the bladder trigone. Through preoperative imaging, we diagnosed a bladder tumor (inclined towards benign). The transurethral resection of the bladder tumor was performed. Unfortunately, the surgery was unsuccessful due to the difficulty in removing the excised tissue through the urethra. Subsequently, bladder incision and tumor resection were performed. The tumor was successfully removed. Surprisingly, the postoperative pathology showed that the tumor tissue was corpus cavernosum. The pathological diagnosis was ectopic corpus cavernosum in the bladder. No complications were found after the operation, and no recurrence was observed during follow-up. Conclusion: The ectopic corpus cavernosum in the bladder has never been reported for children, which is presented as a benign tumor with rapid proliferation and large size. Surgery is recommended. However, the transurethral resection of bladder tumors is difficult to perform due to narrow urethra and limited surgical instruments. Bladder incision and tumor resection may be preferred.

14.
Eur J Pediatr ; 183(1): 51-60, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37861791

ABSTRACT

The effect of renal functional status on drug metabolism is a crucial consideration for clinicians when determining the appropriate dosage of medications to administer. In critically ill patients, there is often a significant increase in renal function, which leads to enhanced drug metabolism and potentially inadequate drug exposure. This phenomenon, known as augmented renal clearance (ARC), is commonly observed in pediatric critical care settings. The findings of the current study underscore the significant impact of ARC on the pharmacokinetics and pharmacodynamics of antimicrobial drugs in critically ill pediatric patients. Moreover, the study reveals a negative correlation between increased creatinine clearance and blood concentrations of antimicrobial drugs. The article provides a comprehensive review of ARC screening in pediatric patients, including its definition, risk factors, and clinical outcomes. Furthermore, it summarizes the dosages and dosing regimens of commonly used antibacterial and antiviral drugs for pediatric patients with ARC, and recommendations are made for dose and infusion considerations and the role of therapeutic drug monitoring. CONCLUSION:  ARC impacts antimicrobial drugs in pediatric patients. WHAT IS KNOWN: • ARC is inextricably linked to the failure of antimicrobial therapy, recurrence of infection, and subtherapeutic concentrations of drugs. WHAT IS NEW: • This study provides an updated overview of the influence of ARC on medication use and clinical outcomes in pediatric patients. • In this context, there are several recommendations for using antibiotics in pediatric patients with ARC: 1) increase the dose administered; 2) prolonged or continuous infusion administration; 3) use of TDM; and 4) use alternative drugs that do not undergo renal elimination.


Subject(s)
Anti-Bacterial Agents , Critical Illness , Humans , Child , Critical Illness/therapy , Anti-Bacterial Agents/therapeutic use , Kidney/metabolism , Kidney Function Tests , Renal Elimination
15.
Org Biomol Chem ; 22(2): 348-352, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38086690

ABSTRACT

Sulfinamides are a versatile class of compounds that find applications in both organic synthesis and pharmaceuticals. Here we developed an efficient photocatalytic approach for the convenient preparation of sulfinamides. Commercially available potassium trifluoro(organo)borates and readily available sulfinyl amines are rationally used and converted to a series of alkyl or aryl sulfinamides in moderate to high yields. The reaction allows for the gram-scale preparation of sulfinamides. Moreover, sulfonimidamides, sulfonimidate esters and sulfonyl amides could be obtained in one pot.

16.
Chinese Pharmacological Bulletin ; (12): 256-262, 2024.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1013618

ABSTRACT

Aim To study the mechanism of quereetin (Que) inhibiting mitochondrial damage induced by Aβ

17.
BMJ Open ; 13(11): e070827, 2023 11 15.
Article in English | MEDLINE | ID: mdl-37967998

ABSTRACT

BACKGROUND: Emergency percutaneous coronary intervention (PCI) can quickly restore myocardial perfusion after acute coronary syndrome. Whether and which lipid-lowering regimens are effective in reducing major adverse cardiovascular events (MACEs) and mortality risk after PCI remain unclear. OBJECTIVE: This study assessed the benefits of different lipid-lowering regimens on the risk of MACEs and mortality in the post-PCI population by network meta-analysis. METHODS: Public databases, including PubMed, Embase and the Cochrane Library, were searched from inception to August 2022. Randomised controlled trials (RCTs) on lipid-lowering regimens in post-PCI populations were included and analysed. The outcomes were the incidence of all-cause mortality and MACEs, whether reported as dichotomous variables or as HRs. RESULTS: Thirty-nine RCTs were included. For MACEs, alirocumab plus rosuvastatin (OR: 0.18; 95% CI: 0.07 to 0.44), evolocumab plus ezetimibe and statins (OR: 0.19; 95% CI: 0.06 to 0.59), eicosapentaenoic acid (EPA) plus pitavastatin (HR: 0.67; 95% CI: 0.49 to 0.96) and icosapent ethyl plus statins (HR: 0.73; 95% CI: 0.62 to 0.86) had significant advantages and relatively high rankings. For mortality, rosuvastatin (OR: 0.30; 95% CI: 0.11 to 0.84), ezetimibe plus statins (OR: 0.55; 95% CI: 0.43 to 0.89) and icosapent ethyl plus statins (OR: 0.66; 95% CI: 0.45 to 0.96) had significant advantages compared with the control. CONCLUSION: EPA, especially icosapent ethyl, plus statins had a beneficial effect on reducing the risk of MACEs and mortality in post-PCI patients. Proprotein convertase subtilisin/kexin type-9 inhibitors plus statins were able to reduce the risk of MACEs, but the risk of mortality remained unclear. PROSPERO REGISTRATION NUMBER: CRD42018099600.


Subject(s)
Acute Coronary Syndrome , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Percutaneous Coronary Intervention , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Rosuvastatin Calcium , Network Meta-Analysis , Ezetimibe , Acute Coronary Syndrome/drug therapy , Acute Coronary Syndrome/surgery , Lipids
18.
J Agric Food Chem ; 71(48): 18769-18779, 2023 Dec 06.
Article in English | MEDLINE | ID: mdl-38006352

ABSTRACT

High-fat diets (HFD) could cause obesity, trigger lipid accumulation, and induce oxidative stress and inflammation, leading to kidney damage. This study aimed to elucidate the protective effects of nuciferine on HFD-caused nephrotoxicity and explore the underlying mechanisms in Kunming mice and palmitic acid-exposed HK-2 cells. In obese mice, nuciferine notably alleviated HFD-induced chronic renal dysfunction and delayed renal fibrosis progression and podocyte apoptosis, as evidenced by the increased expressions of renal function factors BUN, CRE, and UA and the decreased expressions of key protein factors TGF-ß1, p-Samd3, Wnt-1, and ß-catenin. Nuciferine also effectively attenuated HFD-induced renal lipid accumulation via the AMPK-mediated regulation of FAS and HSL expressions and suppressed inflammation and oxidative stress via the AMPK-mediated Nrf-2/HO-1 and TLR4/MyD88/NF-κB pathways. In addition, consistent with the results of animal experiments, nuciferine remarkably reversed cell damage and attenuated lipid accumulation, inflammation, and oxidative stress in palmitic acid-exposed HK-2 cells through the AMPK-mediated signaling pathway. Therefore, nuciferine could be a new food-derived protective agent to offset obesity and correlative kidney damage.


Subject(s)
AMP-Activated Protein Kinases , Antioxidants , Mice , Animals , Antioxidants/metabolism , AMP-Activated Protein Kinases/metabolism , Palmitic Acid/adverse effects , Inflammation/metabolism , Anti-Inflammatory Agents/pharmacology , NF-kappa B/genetics , NF-kappa B/metabolism , Obesity/drug therapy , Obesity/genetics , Obesity/complications , Oxidative Stress , Diet, High-Fat/adverse effects
19.
Zhongguo Zhong Yao Za Zhi ; 48(17): 4675-4685, 2023 Sep.
Article in Chinese | MEDLINE | ID: mdl-37802806

ABSTRACT

The Compound Cheqian Tablets are derived from Cheqian Power in Comprehensive Recording of Divine Assistance, and they are made by modern technology with the combination of Plantago asiatica and Coptis chinensis. To investigate the material basis of Compound Cheqian Tablets in the treatment of diabetic nephropathy, in this study, the chemical components of Compound Cheqian Tablets were characterized and analyzed by UPLC-Q-TOF-MS/MS, and a total of 48 chemical components were identified. The identified chemical compounds were analyzed by network pharmacology. By validating with previous literature, six bioactive compounds including acteoside, isoacteoside, coptisine, magnoflorine, palmatine, and berberine were confirmed as the index components for qua-lity evaluation. Furthermore, the content of the six components in the Compound Cheqian Tablets was determined by the "double external standards" quantitative analysis of multi-components by single marker(QAMS), and the relative correction factor of isoacteoside was calculated as 1.118 by using acteoside as the control; the relative correction factors of magnoflorine, palmatine, and berberine were calculated as 0.729, 1.065, and 1.126, respectively, by using coptisine as the control, indicating that the established method had excellent stability under different conditions. The results obtained by the "double external standards" QAMS approximated those obtained by the external standard method. This study qualitatively characterized the chemical components in the Compound Cheqian Tablets by applying UPLC-Q-TOF-MS/MS and screened the pharmacodynamic substance basis for the treatment of diabetic nephropathy via network pharmacology, and primary pharmacodynamic substance groups were quantitatively analyzed by the "double external stan-dards" QAMS method, which provided a scientific basis for clarifying the pharmacodynamic substance basis and quality control of Compound Cheqian Tablets.


Subject(s)
Berberine , Diabetic Nephropathies , Drugs, Chinese Herbal , Humans , Tandem Mass Spectrometry , Berberine/pharmacology , Chromatography, High Pressure Liquid/methods , Network Pharmacology , Drugs, Chinese Herbal/chemistry , Quality Control , Tablets
20.
Plant Foods Hum Nutr ; 78(4): 776-782, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37668768

ABSTRACT

Phytochemical investigation of 70% EtOH extract of the seeds of Capsella bursa-pastoris led to the isolation of a new cyclobutane organic acid (1), and fourteen known compounds, including two organosulfur compounds (2, 3), two quinonoids (4, 5), five flavonoids (6-10), three sterols (11-13) and two other types (14, 15). The structures of the compounds were elucidated by extensive spectroscopic analyses as well as comparison of their spectroscopic data with those reported in the literature. The antioxidant capacities of all compounds and extractive fractions were evaluated by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging test and ferric reducing antioxidant power (FRAP) assay. Then the antioxidative substances were evaluated for their neuroprotective effects against H2O2-induced HT22 cell injury. The results indicated the strong scavenging ability to free radical of the extractive fractions and compounds 1-3, 8-10 and 13, and the ferric reducing antioxidant power of the extractive fractions and compounds 1-3, 8 and 10, which were close to or higher than that of the positive control trolox. The EtOAc fraction, n-BuOH fraction, and compounds 1, 3 and 8 can protect HT-22 cells from oxidative damage.


Subject(s)
Antioxidants , Capsella , Antioxidants/analysis , Hydrogen Peroxide , Plant Extracts/chemistry , Phytochemicals/pharmacology , Seeds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL