Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
J Clin Invest ; 134(2)2024 Jan 16.
Article En | MEDLINE | ID: mdl-37988169

Alzheimer's disease is characterized by the accumulation of amyloid-ß plaques, aggregation of hyperphosphorylated tau (pTau), and microglia activation. Galectin-3 (Gal3) is a ß-galactoside-binding protein that has been implicated in amyloid pathology. Its role in tauopathy remains enigmatic. Here, we showed that Gal3 was upregulated in the microglia of humans and mice with tauopathy. pTau triggered the release of Gal3 from human induced pluripotent stem cell-derived microglia in both its free and extracellular vesicular-associated (EV-associated) forms. Both forms of Gal3 increased the accumulation of pathogenic tau in recipient cells. Binding of Gal3 to pTau greatly enhanced tau fibrillation. Besides Gal3, pTau was sorted into EVs for transmission. Moreover, pTau markedly enhanced the number of EVs released by iMGL in a Gal3-dependent manner, suggesting a role of Gal3 in biogenesis of EVs. Single-cell RNA-Seq analysis of the hippocampus of a mouse model of tauopathy (THY-Tau22) revealed a group of pathogenic tau-evoked, Gal3-associated microglia with altered cellular machineries implicated in neurodegeneration, including enhanced immune and inflammatory responses. Genetic removal of Gal3 in THY-Tau22 mice suppressed microglia activation, reduced the level of pTau and synaptic loss in neurons, and rescued memory impairment. Collectively, Gal3 is a potential therapeutic target for tauopathy.


Galectin 3 , Tauopathies , tau Proteins , Animals , Humans , Mice , Alzheimer Disease/pathology , Disease Models, Animal , Galectin 3/genetics , Galectin 3/metabolism , Induced Pluripotent Stem Cells/metabolism , Mice, Transgenic , Microglia/pathology , tau Proteins/genetics , tau Proteins/metabolism , Tauopathies/genetics , Tauopathies/metabolism
2.
Mol Aspects Med ; 90: 101141, 2023 04.
Article En | MEDLINE | ID: mdl-36089405

Microglia are resident myeloid cells in the central nervous system (CNS) with a unique developmental origin, playing essential roles in developing and maintaining the CNS environment. Recent studies have revealed the involvement of microglia in neurodegenerative diseases, such as Alzheimer's disease, through the modulation of neuroinflammation. Several members of the Siglec family of sialic acid recognition proteins are expressed on microglia. Since the discovery of the genetic association between a polymorphism in the CD33 gene and late-onset Alzheimer's disease, significant efforts have been made to elucidate the molecular mechanism underlying the association between the polymorphism and Alzheimer's disease. Furthermore, recent studies have revealed additional potential associations between Siglecs and Alzheimer's disease, implying that the reduced signal from inhibitory Siglec may have an overall protective effect in lowering the disease risk. Evidences suggesting the involvement of Siglecs in other neurodegenerative diseases are also emerging. These findings could help us predict the roles of Siglecs in other neurodegenerative diseases. However, little is known about the functionally relevant Siglec ligands in the brain, which represents a new frontier. Understanding how microglial Siglecs and their ligands in CNS contribute to the regulation of CNS homeostasis and pathogenesis of neurodegenerative diseases may provide us with a new avenue for disease prevention and intervention.


Alzheimer Disease , Neurodegenerative Diseases , Humans , Sialic Acid Binding Immunoglobulin-like Lectins/genetics , Sialic Acid Binding Immunoglobulin-like Lectins/metabolism , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Ligands , Microglia/metabolism
3.
Transl Psychiatry ; 9(1): 209, 2019 08 27.
Article En | MEDLINE | ID: mdl-31455764

Sialic acids are typically added to the end of glycoconjugates by sialyltransferases. Among the six ST8 α-N-acetyl-neuraminide α-2,8-sialyltransferases (ST8SIA) existing in adult brains, ST8SIA2 is a schizophrenia-associated gene. However, the in vivo substrates and physiological functions of most sialyltransferases are currently unknown. The ST8SIA3 is enriched in the striatum. Here, we showed that ablation of St8sia3 in mice (St8sia3-KO) led to fewer disialylated and trisialylated terminal glycotopes in the striatum of St8sia3-KO mice. Moreover, the apparent sizes of several striatum-enriched G-protein-coupled receptors (GPCRs) (including the adenosine A2A receptor (A2AR) and dopamine D1/D2 receptors (D1R and D2R)) were smaller in St8sia3-KO mice than in WT mice. A sialidase treatment removed the differences in the sizes of these molecules between St8sia3-KO and WT mice, confirming the involvement of sialylation. Expression of ST8SIA3 in the striatum of St8sia3-KO mice using adeno-associated viruses normalized the sizes of these proteins, demonstrating a direct role of ST8SIA3. The lack of ST8SIA3-mediated sialylation altered the distribution of these proteins in lipid rafts and the interaction between D2R and A2AR. Locomotor activity assays revealed altered pharmacological responses of St8sia3-KO mice to drugs targeting these receptors and verified that a greater population of D2R formed heteromers with A2AR in the striatum of St8sia3-KO mice. Since the A2AR-D2R heteromer is an important drug target for several basal ganglia diseases (such as schizophrenia and Parkinson's disease), the present study not only reveals a crucial role for ST8SIA3 in striatal functions but also provides a new drug target for basal ganglia-related diseases.


Corpus Striatum/metabolism , Neurons/metabolism , Receptor, Adenosine A2A/metabolism , Receptors, Dopamine D2/metabolism , Sialyltransferases/metabolism , Animals , Membrane Microdomains/metabolism , Mice , Mice, Knockout , Sialyltransferases/genetics
4.
Nat Commun ; 10(1): 3473, 2019 08 02.
Article En | MEDLINE | ID: mdl-31375685

Huntington's disease (HD) is a neurodegenerative disorder that manifests with movement dysfunction. The expression of mutant Huntingtin (mHTT) disrupts the functions of brain cells. Galectin-3 (Gal3) is a lectin that has not been extensively explored in brain diseases. Herein, we showed that the plasma Gal3 levels of HD patients and mice correlated with disease severity. Moreover, brain Gal3 levels were higher in patients and mice with HD than those in controls. The up-regulation of Gal3 in HD mice occurred before motor impairment, and its level remained high in microglia throughout disease progression. The cell-autonomous up-regulated Gal3 formed puncta in damaged lysosomes and contributed to inflammation through NFκB- and NLRP3 inflammasome-dependent pathways. Knockdown of Gal3 suppressed inflammation, reduced mHTT aggregation, restored neuronal DARPP32 levels, ameliorated motor dysfunction, and increased survival in HD mice. Thus, suppression of Gal3 ameliorates microglia-mediated pathogenesis, which suggests that Gal3 is a novel druggable target for HD.


Brain/pathology , Galectin 3/metabolism , Huntington Disease/pathology , Microglia/pathology , Adult , Animals , Blood Proteins , Brain/cytology , Brain/ultrastructure , Disease Models, Animal , Disease Progression , Female , Galectin 3/blood , Galectin 3/genetics , Galectins , Gene Knockdown Techniques , Humans , Huntington Disease/blood , Huntington Disease/diagnosis , Inflammasomes/metabolism , Lysosomes/metabolism , Lysosomes/ultrastructure , Male , Mice , Microglia/cytology , Microglia/ultrastructure , Microscopy, Electron, Transmission , Middle Aged , Severity of Illness Index , Up-Regulation
5.
Front Mol Neurosci ; 11: 158, 2018.
Article En | MEDLINE | ID: mdl-29867350

Microglia are the innate sentinels of the central nervous system (CNS) and are responsible for the homeostasis and immune defense of the CNS. Under the influence of the local environment and cell-cell interaction, microglia exhibit a multidimensional and context-dependent phenotypes that can be cytotoxic and neuroprotective. Recent studies suggest that microglia express multitudinous types of lectins, including galectins, Siglecs, mannose-binding lectins (MBLs) and other glycan binding proteins. Because most studies that examine lectins focus on the peripheral system, the functions of lectins have not been critically investigated in the CNS. In addition, the types of brain cells that contribute to the altered levels of lectins present in diseases are often unclear. In this review, we will discuss how galectins, Siglecs, selectins and MBLs contribute to the dynamic functions of microglia. The interacting ligands of these lectins are complex glycoconjugates, which consist of glycoproteins and glycolipids that are expressed on microglia or surrounding cells. The current understanding of the heterogeneity and functions of glycans in the brain is limited. Galectins are a group of pleotropic proteins that recognize both ß-galactoside-containing glycans and non- ß-galactoside-containing proteins. The function and regulation of galectins have been implicated in immunomodulation, neuroinflammation, apoptosis, phagocytosis and oxidative bursts. Most Siglecs are expressed at a low level on the plasma membrane and bind to sialic acid residues for immunosurveillance and cell-cell communication. Siglecs are classified based on their inhibitory and activatory downstream signaling properties. Inhibitory Siglecs negatively regulate microglia activation upon recognizing the intact sialic acid patterns and vice versa. MBLs are expressed upon infection in cytoplasm and can be secreted in order to recognize molecules containing terminal mannose as an innate immune defense machinery. Most importantly, multiple studies have reported dysregulation of lectins in neurological disorders. Here, we reviewed recent studies on microglial lectins and their functions in CNS health and disease, and suggest that these lectin families are novel, potent therapeutic targets for neurological diseases.

6.
Mov Disord ; 32(11): 1600-1609, 2017 Nov.
Article En | MEDLINE | ID: mdl-28782830

BACKGROUND: Disruptions in gamma-aminobutyric (GABA) acid signaling are believed to be involved in Huntington's disease pathogenesis, but the regulation of GABAergic signaling remains elusive. Here we evaluated GABAergic signaling by examining the function of GABAergic drugs in Huntington's disease and the expression of GABAergic molecules using mouse models and human brain tissues from Huntington's disease. METHODS: We treated wild-type and R6/2 mice (a transgenic Huntington's disease mouse model) acutely with vehicle, diazepam, or gaboxadol (drugs that selectively target synaptic or extrasynaptic GABAA receptors) and monitored their locomotor activity. The expression levels of GABAA receptors and a major neuron-specific chloride extruder (potassium-chloride cotransporter-2) were analyzed by real-time quantitative polymerase chain reaction, Western blot, and immunocytochemistry. RESULTS: The R6/2 mice were less sensitive to the sedative effects of both drugs, suggesting reduced function of GABAA receptors. Consistently, the expression levels of α1/α2 and δ subunits were lower in the cortex and striatum of R6/2 mice. Similar results were also found in 2 other mouse models of Huntington's disease and in Huntington's disease patients. Moreover, the interaction and expression levels of potassium-chloride cotransporter-2 and its activator (brain-type creatine kinase) were decreased in Huntington's disease neurons. These findings collectively suggest impaired chloride homeostasis, which further dampens GABAA receptor-mediated inhibitory signaling in Huntington's disease brains. CONCLUSIONS: The dysregulated GABAergic responses and altered expression levels of GABAA receptors and potassium-chloride cotransporter-2 in Huntington's disease mice appear to be authentic and may contribute to the clinical manifestations of Huntington's disease patients. © 2017 International Parkinson and Movement Disorder Society.


Behavior, Animal/drug effects , Cerebral Cortex/metabolism , Corpus Striatum/metabolism , Diazepam/pharmacology , GABA Agonists/pharmacology , GABA Modulators/pharmacology , Huntington Disease/metabolism , Isoxazoles/pharmacology , Receptors, GABA-A/metabolism , Animals , Cerebral Cortex/drug effects , Corpus Striatum/drug effects , Disease Models, Animal , Female , Male , Mice , Mice, Transgenic , Receptors, GABA-A/drug effects
...