Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Cell Environ ; 34(10): 1776-89, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21635271

ABSTRACT

In roses, light is a central environmental factor controlling bud break and involves a stimulation of sugar metabolism. Very little is known about the role of sucrose transporters in the bud break process and its regulation by light. In this study, we show that sugar promotes rose bud break and that bud break is accompanied by an import of sucrose. Radio-labelled sucrose accumulation is higher in buds exposed to light than to darkness and involves an active component. Several sucrose transporter (RhSUC1, 2, 3 and 4) transcripts are expressed in rose tissues, but RhSUC2 transcript level is the only one induced in buds exposed to light after removing the apical dominance. RhSUC2 is preferentially expressed in bursting buds and stems. Functional analyses in baker's yeast demonstrate that RhSUC2 encodes a sucrose/proton co-transporter with a K(m) value of 2.99 mm at pH 4.5 and shows typical features of sucrose symporters. We therefore propose that bud break photocontrol partly depends upon the modulation of sucrose import into buds by RhSUC2.


Subject(s)
Membrane Transport Proteins/metabolism , Plant Proteins/metabolism , Rosa/physiology , Sucrose/metabolism , Biological Transport/radiation effects , Light , Membrane Transport Proteins/genetics , Membrane Transport Proteins/radiation effects , Plant Proteins/genetics , Plant Proteins/radiation effects , Plant Stems/metabolism , Plant Stems/radiation effects , Rosa/radiation effects , Sucrose/radiation effects
2.
Plant Cell Environ ; 33(8): 1339-50, 2010 Aug 01.
Article in English | MEDLINE | ID: mdl-20374536

ABSTRACT

Bud burst in certain species is conditioned by the luminous environment. With roses, the requirement for light is absolute, and darkness totally inhibits bud burst. Few studies have looked into understanding the action of light on the physiological bud burst processes. Here, we show the impact of light on certain components of glucidic metabolism during bud burst. Measurements were taken on decapitated plants of Rosa hybrida L. 'Radrazz' exposed either to darkness, white, blue or R light. Results show that a mobilization of bud and the carrying stem sucrose reserves only takes place in light and accompanies the bud burst. Furthermore, the activity of the RhVI vacuolar acid invertase which contributes to the breakdown of sucrose in the buds, as well as the transcription of the RhVI gene, is reduced in darkness, although it is strongly stimulated by light. The same analysis concerning the RhNAD-SDH gene, coding an NAD-dependent sorbitol dehydrogenase, shows, on the contrary, a strong induction of its transcription in darkness that could reflect the use of survival mechanisms in this condition.


Subject(s)
Carbohydrate Metabolism , Light , Plant Stems/metabolism , Rosa/radiation effects , Sucrose/metabolism , Meristem/growth & development , Plant Leaves/growth & development , Plant Stems/growth & development , Plant Stems/radiation effects , RNA, Plant/metabolism , Rosa/growth & development , Rosa/metabolism , beta-Fructofuranosidase/metabolism
3.
Tree Physiol ; 25(2): 229-35, 2005 Feb.
Article in English | MEDLINE | ID: mdl-15574404

ABSTRACT

We studied the short-term (i.e., a few days) effect of a sudden increase in CO2 uptake by shoots on nutrient (NO3-, P ion, K+, Ca2+ and Mg2+) uptake by roots during vegetative growth of young walnut (Juglans nigra x J. major L.) trees. The increase in CO2 uptake was induced by a sudden increase in atmospheric CO2 concentration ([CO2]). Twelve 2-year-old trees were transplanted and grown in perlite-filled pots in a greenhouse. Rates of CO2 uptake and water loss by individual trees were determined by a branch bag method from 3 days before until 6 days after [CO2] was increased. Nutrient uptake rates were measured concurrently by a hydroponic recirculating nutrient solution system that provided non-limiting supplies of water and nutrients. Six control trees were kept in ambient [CO2] (360 ppm), and [CO2] was increased to 550 ppm for one set of three trees and to 800 ppm for another set of three trees. Before imposing the elevated [CO2] treatments, all trees exhibited similar daily water loss, CO2 uptake and nutrient uptake rates when expressed per unit leaf area to account for the tree size effect. Daily water loss rates were only slightly affected by elevated [CO2]. Carbon dioxide uptake rates greatly increased with increasing atmospheric [CO2], and nutrient uptake rates were proportional to CO2 uptake rates during the study period, except for P ion. Our results show that, despite the important carbon and nitrogen storage capacities previously observed in young walnut trees, nutrient uptake by roots is strongly coupled to carbon uptake by shoots over periods of a few days.


Subject(s)
Juglans/physiology , Plant Roots/physiology , Plant Shoots/physiology , Trees/physiology , Carbon Dioxide , Photosynthesis/physiology , Plant Leaves/physiology , Plant Transpiration/physiology , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...