Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Cancer Cell ; 34(3): 396-410.e8, 2018 09 10.
Article in English | MEDLINE | ID: mdl-30205044

ABSTRACT

There is a pressing need to identify therapeutic targets in tumors with low mutation rates such as the malignant pediatric brain tumor medulloblastoma. To address this challenge, we quantitatively profiled global proteomes and phospho-proteomes of 45 medulloblastoma samples. Integrated analyses revealed that tumors with similar RNA expression vary extensively at the post-transcriptional and post-translational levels. We identified distinct pathways associated with two subsets of SHH tumors, and found post-translational modifications of MYC that are associated with poor outcomes in group 3 tumors. We found kinases associated with subtypes and showed that inhibiting PRKDC sensitizes MYC-driven cells to radiation. Our study shows that proteomics enables a more comprehensive, functional readout, providing a foundation for future therapeutic strategies.


Subject(s)
Biomarkers, Tumor/metabolism , Brain Neoplasms/pathology , Medulloblastoma/pathology , Protein Processing, Post-Translational , Adolescent , Adult , Cell Line, Tumor , Child , Child, Preschool , DNA Methylation , DNA-Activated Protein Kinase/metabolism , Female , Gene Expression Profiling , Hedgehog Proteins/metabolism , Humans , Infant , Male , Nuclear Proteins/metabolism , Proteome/metabolism , Proteomics , Proto-Oncogene Proteins c-myc/metabolism , Sequence Analysis, RNA , Young Adult
2.
Nat Med ; 24(9): 1441-1448, 2018 09.
Article in English | MEDLINE | ID: mdl-30082870

ABSTRACT

Although programmed death-ligand 1-programmed death 1 (PD-L1-PD-1) inhibitors are broadly efficacious, improved outcomes have been observed in patients with high PD-L1 expression or high tumor mutational burden (TMB). PD-L1 testing is required for checkpoint inhibitor monotherapy in front-line non-small-cell lung cancer (NSCLC). However, obtaining adequate tumor tissue for molecular testing in patients with advanced disease can be challenging. Thus, an unmet medical need exists for diagnostic approaches that do not require tissue to identify patients who may benefit from immunotherapy. Here, we describe a novel, technically robust, blood-based assay to measure TMB in plasma (bTMB) that is distinct from tissue-based approaches. Using a retrospective analysis of two large randomized trials as test and validation studies, we show that bTMB reproducibly identifies patients who derive clinically significant improvements in progression-free survival from atezolizumab (an anti-PD-L1) in second-line and higher NSCLC. Collectively, our data show that high bTMB is a clinically actionable biomarker for atezolizumab in NSCLC.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Carcinoma, Non-Small-Cell Lung/blood , Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/blood , Lung Neoplasms/genetics , Mutation/genetics , Tumor Burden/genetics , Antibodies, Monoclonal, Humanized , B7-H1 Antigen/metabolism , Biomarkers, Tumor/metabolism , Carcinoma, Non-Small-Cell Lung/drug therapy , Humans , Immunotherapy , Kaplan-Meier Estimate , Lung Neoplasms/drug therapy , Progression-Free Survival , Treatment Outcome
3.
J Infect Dis ; 215(2): 312-320, 2017 01 15.
Article in English | MEDLINE | ID: mdl-27837008

ABSTRACT

Background: Pediatric acute respiratory distress in tropical settings is very common. Bacterial pneumonia is a major contributor to morbidity and mortality rates and requires adequate diagnosis for correct treatment. A rapid test that could identify bacterial (vs other) infections would have great clinical utility. Methods and Results: We performed RNA (RNA-seq) sequencing and analyzed the transcriptomes of 68 pediatric patients with well-characterized clinical phenotype to identify transcriptional features associated with each disease class. We refined the features to predictive models (support vector machine, elastic net) and validated those models in an independent test set of 37 patients (80%-85% accuracy). Conclusions: We have identified sets of genes that are differentially expressed in pediatric patients with pneumonia syndrome attributable to different infections and requiring different therapeutic interventions. Findings of this study demonstrate that human transcription signatures in infected patients recapitulate the underlying biology and provide models for predicting a bacterial diagnosis to inform treatment.


Subject(s)
Gene Expression Profiling , Pathology, Molecular/methods , Pneumonia/etiology , Pneumonia/pathology , Child , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Male , Pneumonia/diagnosis , Sequence Analysis, RNA
4.
Am J Respir Crit Care Med ; 193(4): 448-59, 2016 Feb 15.
Article in English | MEDLINE | ID: mdl-26469764

ABSTRACT

RATIONALE: Plasma-detectable biomarkers that rapidly and accurately diagnose bacterial infections in children with suspected pneumonia could reduce the morbidity of respiratory disease and decrease the unnecessary use of antibiotic therapy. OBJECTIVES: Using 56 markers measured in a multiplexed immunoassay, we sought to identify proteins and protein combinations that could discriminate bacterial from viral or malarial diagnoses. METHODS: We selected 80 patients with clinically diagnosed pneumonia (as defined by the World Health Organization) who also met criteria for bacterial, viral, or malarial infection based on clinical, radiographic, and laboratory results. Ten healthy community control subjects were enrolled to assess marker reliability. Patients were subdivided into two sets: one for identifying potential markers and another for validating them. MEASUREMENTS AND MAIN RESULTS: Three proteins (haptoglobin, tumor necrosis factor receptor 2 or IL-10, and tissue inhibitor of metalloproteinases 1) were identified that, when combined through a classification tree signature, accurately classified patients into bacterial, malarial, and viral etiologies and misclassified only one patient with bacterial pneumonia from the validation set. The overall sensitivity and specificity of this signature for the bacterial diagnosis were 96 and 86%, respectively. Alternative combinations of markers with comparable accuracy were selected by support vector machine and regression models and included haptoglobin, IL-10, and creatine kinase-MB. CONCLUSIONS: Combinations of plasma proteins accurately identified children with a respiratory syndrome who were likely to have bacterial infections and who would benefit from antibiotic therapy. When used in conjunction with malaria diagnostic tests, they may improve diagnostic specificity and simplify treatment decisions for clinicians.


Subject(s)
Malaria/blood , Pneumonia, Viral/blood , Biomarkers/blood , Child, Preschool , Diagnosis, Differential , Female , Haptoglobins/metabolism , Humans , Immunoassay , Infant , Malaria/complications , Male , Matrix Metalloproteinase 1/blood , Pneumonia/blood , Pneumonia/etiology , Pneumonia, Bacterial/blood , Receptors, Interleukin-10/blood , Receptors, Tumor Necrosis Factor, Type II/blood , Reproducibility of Results , Sensitivity and Specificity
5.
Bioinformatics ; 31(14): 2400-2, 2015 Jul 15.
Article in English | MEDLINE | ID: mdl-25617416

ABSTRACT

MOTIVATION: Analysis of RNA sequencing (RNA-Seq) data revealed that the vast majority of human genes express multiple mRNA isoforms, produced by alternative pre-mRNA splicing and other mechanisms, and that most alternative isoforms vary in expression between human tissues. As RNA-Seq datasets grow in size, it remains challenging to visualize isoform expression across multiple samples. RESULTS: To help address this problem, we present Sashimi plots, a quantitative visualization of aligned RNA-Seq reads that enables quantitative comparison of exon usage across samples or experimental conditions. Sashimi plots can be made using the Broad Integrated Genome Viewer or with a stand-alone command line program. AVAILABILITY AND IMPLEMENTATION: Software code and documentation freely available here: http://miso.readthedocs.org/en/fastmiso/sashimi.html


Subject(s)
Alternative Splicing , Exons , Gene Expression Profiling/methods , Sequence Analysis, RNA/methods , Computer Graphics , Humans , RNA Isoforms/chemistry , RNA Isoforms/metabolism , Sequence Alignment
6.
Genome Biol ; 15(11): 511, 2014.
Article in English | MEDLINE | ID: mdl-25395010

ABSTRACT

BACKGROUND: Drug resistance remains a major public health challenge for malaria treatment and eradication. Individual loci associated with drug resistance to many antimalarials have been identified, but their epistasis with other resistance mechanisms has not yet been elucidated. RESULTS: We previously described two mutations in the cytoplasmic prolyl-tRNA synthetase (cPRS) gene that confer resistance to halofuginone. We describe here the evolutionary trajectory of halofuginone resistance of two independent drug resistance selections in Plasmodium falciparum. Using this novel methodology, we discover an unexpected non-genetic drug resistance mechanism that P. falciparum utilizes before genetic modification of the cPRS. P. falciparum first upregulates its proline amino acid homeostasis in response to halofuginone pressure. We show that this non-genetic adaptation to halofuginone is not likely mediated by differential RNA expression and precedes mutation or amplification of the cPRS gene. By tracking the evolution of the two drug resistance selections with whole genome sequencing, we further demonstrate that the cPRS locus accounts for the majority of genetic adaptation to halofuginone in P. falciparum. We further validate that copy-number variations at the cPRS locus also contribute to halofuginone resistance. CONCLUSIONS: We provide a three-step model for multi-locus evolution of halofuginone drug resistance in P. falciparum. Informed by genomic approaches, our results provide the first comprehensive view of the evolutionary trajectory malaria parasites take to achieve drug resistance. Our understanding of the multiple genetic and non-genetic mechanisms of drug resistance informs how we will design and pair future anti-malarials for clinical use.


Subject(s)
Biological Evolution , Drug Resistance , Malaria, Falciparum/drug therapy , Plasmodium falciparum/drug effects , Genomics , Humans , Malaria, Falciparum/genetics , Malaria, Falciparum/parasitology , Mutation , Piperidines/therapeutic use , Plasmodium falciparum/genetics , Protozoan Proteins , Quinazolinones/therapeutic use , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL