Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Bioorg Med Chem ; 46: 116371, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34500188

ABSTRACT

The multifunctional transcription factor, nuclear factor-κB (NF-κB), is broadly involved in multiple human diseases, such as cancer and chronic inflammation, through abnormal modulations of the NF-κB signaling cascades. In patients with several types of cancer diseases, NF-κB is excessively activated, which could result in the stimulation of proliferation and/or suppression of apoptosis. Herein, we present a new series of 1,2,3,4-tetrahydroisoquinoline derivatives with good anticancer activities against various human cancer cell lines, which are rationally designed based on our novel NF-κB inhibitors. The SAR studies demonstrated that compound 5d with a methoxy group at the R3 position exhibits the most anti-proliferative activity with GI50 values, ranging 1.591 to 2.281 µM. Similar to KL-1156, the compound 5d (HSR1304) blocked NF-κB nuclear translocation step in LPS-stimulated MDA-MB-231 cells, probably leading to cytotoxic potency against tumor cells. Together with known potent NF-κB inhibitors containing diverse core heterocyclic moieties, the 1,2,3,4-tetrahydroisoquinoline derivatives can provide structural diversity, enhancing a potential for the development of a novel class of anticancer drugs.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Design , NF-kappa B/antagonists & inhibitors , Tetrahydroisoquinolines/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Molecular Structure , NF-kappa B/metabolism , Signal Transduction/drug effects , Structure-Activity Relationship , Tetrahydroisoquinolines/chemical synthesis , Tetrahydroisoquinolines/chemistry , Tumor Cells, Cultured
2.
Int J Mol Sci ; 21(7)2020 Mar 27.
Article in English | MEDLINE | ID: mdl-32230861

ABSTRACT

Eleven novel isoquinoline-1-carboxamides (HSR1101~1111) were synthesized and evaluated for their effects on lipopolysaccharide (LPS)-induced production of pro-inflammatory mediators and cell migration in BV2 microglial cells. Three compounds (HSR1101~1103) exhibited the most potent suppression of LPS-induced pro-inflammatory mediators, including interleukin (IL)-6, tumor necrosis factor-alpha, and nitric oxide (NO), without significant cytotoxicity. Among them, only N-(2-hydroxyphenyl) isoquinoline-1-carboxamide (HSR1101) was found to reverse LPS-suppressed anti-inflammatory cytokine IL-10, so it was selected for further characterization. HSR1101 attenuated LPS-induced expression of inducible NO synthase and cyclooxygenase-2. Particularly, HSR1101 abated LPS-induced nuclear translocation of NF-κB through inhibition of IκB phosphorylation. Furthermore, HSR1101 inhibited LPS-induced cell migration and phosphorylation of mitogen-activated protein kinases (MAPKs) including extracellular signal-regulated kinase 1/2, c-Jun N-terminal kinase, and p38 MAPK. The specific MAPK inhibitors, U0126, SP600125, and SB203580, suppressed LPS-stimulated pro-inflammatory mediators, cell migration, and NF-κB nuclear translocation, indicating that MAPKs may be the upstream kinase of NF-κB signaling. Collectively, these results demonstrate that HSR1101 is a potent and promising compound suppressing LPS-induced inflammation and cell migration in BV2 microglial cells, and that inhibition of the MAPKs/NF-κB pathway mediates its anti-inflammatory and anti-migratory effects. Based on our findings, HSR1101 may have beneficial impacts on various neurodegenerative disorders associated with neuroinflammation and microglial activation.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Microglia/drug effects , Microglia/metabolism , Mitogen-Activated Protein Kinases/metabolism , NF-kappa B/metabolism , Animals , Anti-Inflammatory Agents/chemistry , Cell Movement/drug effects , Cyclooxygenase 2/metabolism , Cytokines/metabolism , Inflammation Mediators/metabolism , Inhibitory Concentration 50 , Interleukin-10/metabolism , Interleukin-6/metabolism , Isoquinolines/chemistry , Isoquinolines/pharmacology , Lipopolysaccharides/pharmacology , MAP Kinase Signaling System/drug effects , Mice , Neurodegenerative Diseases/metabolism , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/metabolism , Phosphorylation/drug effects , Signal Transduction/drug effects , Tumor Necrosis Factor-alpha/metabolism , Wound Healing/drug effects
3.
Bioorg Med Chem ; 26(18): 5181-5193, 2018 10 01.
Article in English | MEDLINE | ID: mdl-30253887

ABSTRACT

A novel series of 35 angularly fused pentacyclic 13H-benzo[f]chromeno[4,3-b][1,7]naphthyridines and 13H-benzo[f]chromeno[4,3-b][1,7]naphthyridin-5-ium chlorides were designed and synthesized. Their cytotoxic activities were investigated against six human cancer cell lines (NCIH23, HCT15, NUGC-3, ACHN, PC-3, and MDA-MB-231). Among all screened compounds; 28, 30, 34, 35, 46, 48, 52, and 53 compounds exhibited potent cytotoxic activities against all tested human cancer cell lines. Further, these potent lead cytotoxic agents were evaluated against human Topoisomerase I and IIα inhibition. Among them, the compound 48 exhibited dual Topoisomerase I and IIα inhibition especially at 20 µM concentrations the compound 48 exhibited 1.25 times more potent Topoisomerase IIα inhibitory activity (38.3%) than the reference drug etoposide (30.6%). The compound 52 also exhibited excellent (88.4%) topoisomerase I inhibition than the reference drug camptothecin (66.7%) at 100 µM concentrations. Molecular docking studies of the compounds 48 and 52 with topo I discovered that they both intercalated into the DNA single-strand cleavage site where the compound 48 have van der Waals interactions with residues Arg364, Pro431, and Asn722 whilst the compound 52 have with Arg364, Thr718, and Asn722 residues. Both the compounds 48 and 52 have π-π stacking interactions with the stacked DNA bases. The docking studies of the compound 48 with topo IIα explored that it was bound to the topo IIα DNA cleavage site where etoposide was situated. The benzo[f]chromeno[4,3-b][1,7]naphthyridine ring of the compound 48 was stacked between the DNA bases of the cleavage site with π-π stacking interactions and there were no hydrogen bond interactions with topo IIα.


Subject(s)
Antineoplastic Agents/pharmacology , DNA Topoisomerases, Type II/metabolism , DNA Topoisomerases, Type I/metabolism , Naphthyridines/pharmacology , Topoisomerase Inhibitors/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Design , Drug Screening Assays, Antitumor , Humans , Molecular Structure , Naphthyridines/chemical synthesis , Naphthyridines/chemistry , Salts/chemical synthesis , Salts/chemistry , Salts/pharmacology , Structure-Activity Relationship , Topoisomerase Inhibitors/chemical synthesis , Topoisomerase Inhibitors/chemistry
4.
Sci Rep ; 7(1): 6480, 2017 07 25.
Article in English | MEDLINE | ID: mdl-28744022

ABSTRACT

Human granulocyte colony-stimulating factor (GCSF) is a well-known cytokine for neutropenia treatment. However, daily injections are required due to the short circulating half-life of the protein. To overcome this bottleneck, we fused GCSF with the Fc domain of IgG1 at the C terminus (GCSF-Fc) and with the maltose binding protein (MBP) tag at the N-terminus and expressed it as a soluble protein in the cytoplasm of E. coli. We also conjugated PEG aldehyde to GCSF to make PEG-GCSF. The bioactivities of GCSF-Fc and PEG-GCSF were similar to native GCSF using the mouse M-NFS-60 myelogenous leukemia cell line. The EC50 dose-response curves for GCSF, GCSF-Fc and PEG-GCSF were 37 ± 12 pM, 75 ± 13.5 pM and 46 ± 5.5 pM, respectively. When the proteins were injected into neutropenic rats, the group injected with PEG-GCSF showed the highest and fastest recovery of neutrophils, followed by GCSF-Fc and GCSF. ELISA assay revealed the PEG-GCSF had the longest plasma circulation (>72 h), followed by GCSF-Fc (>48 h) and GCSF (~24 h), which is consistent with the in vivo activities of the proteins. In summary, the GCSF-Fc purified from E. coli was not as efficient as PEG-GCSF in treating neutropenic rats.


Subject(s)
Granulocyte Colony-Stimulating Factor/genetics , Granulocyte Colony-Stimulating Factor/pharmacology , Immunoglobulin Fc Fragments/genetics , Polyethylene Glycols/chemistry , Recombinant Proteins/pharmacology , Animals , Cell Line , Cell Proliferation/drug effects , Escherichia coli/genetics , Humans , Hydrogen-Ion Concentration , Neutropenia/drug therapy , Polyethylene Glycols/pharmacology , Protein Engineering/methods , Rats, Sprague-Dawley , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL