Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Antioxidants (Basel) ; 11(2)2022 Jan 28.
Article in English | MEDLINE | ID: mdl-35204139

ABSTRACT

The cyclic nitroxide TEMPOL exerts anti-oxidative and anti-inflammatory effects, and thus may provide therapeutic benefit in Parkinson's disease (PD), in which mitochondrial dysfunction, oxidative damage and inflammation have been implicated as pathophysiological mechanisms underlying the selective loss of dopaminergic neurons. Markers of oxidative stress and inflammation were investigated in a cell model of differentiated human neuroblastoma (SH-SY5Y) cells treated with the neurotoxin, 6-hydroxydopamine (6-OHDA). Treatment with TEMPOL ameliorated 6-OHDA-mediated cytotoxicity and attenuated biomarkers of oxidative stress including: mitochondrial superoxide anion free radical production, lipid peroxidation, induction of heme oxygenase 1 (HO-1) protein expression and NFκB activation. Treatment with TEMPOL abated decreased gene expression of DRD2S and DRD2L induced by 6-OHDA indicating that TEMPOL may prevent mitochondrial dysfunction and activation of pathways that result in receptor desensitization. 6-OHDA insult decreased gene expression of the antioxidant, SOD-1, and this diminution was also mitigated by TEMPOL. Activation of NFκB increased pro-inflammatory IFNy and decreased IL-6, however, TEMPOL had no effect on these inflammation mediators. Overall, this data suggests that cyclic nitroxides may preserve dopaminergic neuronal cell viability by attenuating oxidative stress and mitochondrial dysfunction, but are unable to affect inflammatory mediators that propagate cellular damage and neurodegeneration in PD.

2.
Int J Mol Sci ; 21(4)2020 Feb 18.
Article in English | MEDLINE | ID: mdl-32085614

ABSTRACT

Increasing reports of neurological and psychiatric complications due to psychostimulant synthetic cathinones (SCs) have recently raised public concern. However, the precise mechanism of SC toxicity is unclear. This paucity of understanding highlights the need to investigate the in-vitro toxicity and mechanistic pathways of three SCs: butylone, pentylone, and 3,4-Methylenedioxypyrovalerone (MDPV). Human neuronal cells of SH-SY5Y were cultured in supplemented DMEM/F12 media and differentiated to a neuronal phenotype using retinoic acid (10 µM) and 12-O-tetradecanoylphorbol-13-acetate (81 nM). Trypan blue and lactate dehydrogenase assays were utilized to assess the neurotoxicity potential and potency of these three SCs. To investigate the underlying neurotoxicity mechanisms, measurements included markers of oxidative stress, mitochondrial bioenergetics, and intracellular calcium (Ca2+), and cell death pathways were evaluated at two doses (EC15 and EC40), for each drug tested. Following 24 h of treatment, all three SCs exhibited a dose-dependent neurotoxicity, characterized by a significant (p < 0.0001 vs. control) production of reactive oxygen species, decreased mitochondrial bioenergetics, and increased intracellular Ca2+ concentrations. The activation of caspases 3 and 7 implicated the orchestration of mitochondrial-mediated neurotoxicity mechanisms for these SCs. Identifying novel therapeutic agents to enhance an altered mitochondrial function may help in the treatment of acute-neurological complications arising from the illicit use of these SCs.


Subject(s)
Alkaloids/pharmacology , Dopaminergic Neurons/cytology , Mitochondria/metabolism , Adenosine Triphosphate/metabolism , Alkaloids/chemistry , Amphetamines/chemistry , Amphetamines/pharmacology , Benzodioxoles/chemistry , Benzodioxoles/pharmacology , Calcium/metabolism , Caspase 3/metabolism , Caspase 7/metabolism , Cell Death/drug effects , Cell Line, Tumor , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/metabolism , Energy Metabolism , Homeostasis/drug effects , Humans , Mitochondria/drug effects , Neurotoxins/toxicity , Oxidative Stress/drug effects , Oxygen Consumption/drug effects , Pyrrolidines/chemistry , Pyrrolidines/pharmacology , Reactive Oxygen Species/metabolism , Synthetic Cathinone
3.
Toxicol In Vitro ; 61: 104640, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31493544

ABSTRACT

Neuroblastoma is an aggressive form of cancer with high mortality. Hydroxychalcones have received considerable attention because of their cytotoxic activities on cancer cells. However, the effect of the 4'-hydroxychalcone on neuroblastoma cells is unknown. The aim of the present study was to characterize the cytotoxicity of 4HC to neuroblastoma and the importance of mitochondrial effects in its action mechanism using an in vitro model of SH-SY5Y cells. Incubation of cultured SHSY5Y cells with 10-60 µM 4HC (24 h) decreased cell confluency, cellular metabolic activity and depleted intracellular ATP relative to the vehicle-treated control. The mechanism of 4HC-induced cell toxicity likely involves mitochondria dysfunctional as judged by inhibition of mitochondrial respiration, depolarization of mitochondria membrane potential and intracellular and morphological alterations. Furthermore, loss of cell viability was accompanied mainly by increase of phosphatidylserine exposure on the surface of cells, suggesting that the flavonoid may induce apoptosis in SH-SY5Y cells. In addition, treatment inhibited SH-SY5Y cell migration/proliferation in a scratch assay and induced significant changes in the cell cycle progression. Our results showed the effects of 4HC in the human neuroblastoma cell line SH-SY5Y are associated with mitochondrial dysfunctional, depletion of intracellular ATP levels, ROS increase, alteration in cell cycle progression and cellular morphology.


Subject(s)
Antineoplastic Agents/pharmacology , Chalcones/pharmacology , Neuroblastoma/drug therapy , Adenosine Triphosphate/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Humans , Membrane Potential, Mitochondrial/drug effects , Neuroblastoma/metabolism , Neuroblastoma/ultrastructure , Reactive Oxygen Species/metabolism
4.
Chem Biol Interact ; 299: 77-87, 2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30502331

ABSTRACT

Neuroblastoma is a common childhood cancer with high mortality. We evaluated the capacity of the flavonoid, isoliquiritigenin (4,2',4'-trihydroxychalcone; ISL) to inhibit cellular proliferation and migration in the human neuroblastoma cell line SH-SY5Y. Incubation of cultured SH-SY5Y cells with 20-100 µM ISL decreased cell confluency (15-70%) after 24 h incubation, while 10-100 µM ISL (24 h) depleted intracellular ATP stores (15-90% vs vehicle-treated control) after 24 h incubation. ISL-mediated cell toxicity did not involve intracellular caspase 3/7 activation, externalization of phosphatidylserine on the cell membrane or stimulation of TNF and IL-1ß release, all indicating that the flavonoid did not induce apoptosis. Pre-treatment of cells with necrostatin-1, a necroptosis inhibitor, significantly restored ATP levels (ATP levels increased 12-42%) in ISL-treated neuroblastoma cells indicative of enhanced viability. By contrast, RIP1 phosphorylation status remained unchanged in cells treated with ISL although the intracellular ratio of phosphorylated/total parental RIP1 increased after ISL treatment on SH-SY5Y cells indicating that ISL decreased levels of native RIP1. In addition, ISL treatment inhibited SH-SY5Y cell migration/proliferation in a scratch assay and arrested cell cycle transition by significantly decreasing the number of cells in G0/G1 phase and increasing populations by ~10% in S (primarily) and G2/M (lesser extent) phases. The intracellular ratio of phosphorylated/total ERK 1/2 and p38 remained unchanged after ISL treatment (up to 40 µM); ERK activation was only determined at ISL dose well above the experimental IC50 value as judged by ELISA analyses and this did not correlate with ISL cytotoxicity at lower dose <40 µM; Western blot assay confirmed the detection of phosphorylated (p-)ERK1/2 and (p-)p38 in ISL treated cells. Together the results suggest that ISL exerts anti-proliferative and cytotoxic activity on SHSY5Y cells through the loss of ATP, induction of cell cycle arrest, and cell death largely via a necroptotic mechanism in the absence of apoptotic activity.


Subject(s)
Cell Proliferation/drug effects , Chalcones/pharmacology , Flavonoids/pharmacology , Adenosine Triphosphate/metabolism , Caspase 3/metabolism , Cell Line, Tumor , Cell Membrane Permeability/drug effects , Cell Movement/drug effects , G1 Phase Cell Cycle Checkpoints/drug effects , Humans , Imidazoles/pharmacology , Indoles/pharmacology , Interleukin-1beta/analysis , Interleukin-1beta/metabolism , Microtubule-Associated Proteins/metabolism , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Neuroblastoma/metabolism , Neuroblastoma/pathology , Phosphorylation/drug effects , Tumor Necrosis Factor-alpha/analysis , Tumor Necrosis Factor-alpha/metabolism
5.
Int J Mol Sci ; 20(1)2018 Dec 28.
Article in English | MEDLINE | ID: mdl-30597899

ABSTRACT

The acute phase protein serum amyloid A (SAA) is associated with endothelial dysfunction and early-stage atherogenesis. Stimulation of vascular cells with SAA increases gene expression of pro-inflammation cytokines and tissue factor (TF). Activation of the transcription factor, nuclear factor kappa-B (NFκB), may be central to SAA-mediated endothelial cell inflammation, dysfunction and pro-thrombotic responses, while targeting NFκB with a pharmacologic inhibitor, BAY11-7082, may mitigate SAA activity. Human carotid artery endothelial cells (HCtAEC) were pre-incubated (1.5 h) with 10 µM BAY11-7082 or vehicle (control) followed by SAA (10 µg/mL; 4.5 h). Under these conditions gene expression for TF and Tumor Necrosis Factor (TNF) increased in SAA-treated HCtAEC and pre-treatment with BAY11-7082 significantly (TNF) and marginally (TF) reduced mRNA expression. Intracellular TNF and interleukin 6 (IL-6) protein also increased in HCtAEC supplemented with SAA and this expression was inhibited by BAY11-7082. Supplemented BAY11-7082 also significantly decreased SAA-mediated leukocyte adhesion to apolipoprotein E-deficient mouse aorta in ex vivo vascular flow studies. In vascular function studies, isolated aortic rings pre-treated with BAY11-7082 prior to incubation with SAA showed improved endothelium-dependent vasorelaxation and increased vascular cyclic guanosine monophosphate (cGMP) content. Together these data suggest that inhibition of NFκB activation may protect endothelial function by inhibiting the pro-inflammatory and pro-thrombotic activities of SAA.


Subject(s)
Aorta/metabolism , Endothelial Cells/metabolism , Endothelium, Vascular/metabolism , Leukocytes/metabolism , NF-kappa B/metabolism , Serum Amyloid A Protein/metabolism , Animals , Aorta/pathology , Atherosclerosis/etiology , Atherosclerosis/metabolism , Biomarkers , Cell Adhesion , Gene Expression Regulation , Humans , Immunohistochemistry , Inflammation Mediators , Leukocytes/immunology , Rats
6.
Front Microbiol ; 8: 2429, 2017.
Article in English | MEDLINE | ID: mdl-29312161

ABSTRACT

Pyocyanin secreted by Pseudomonas aeruginosa is a virulence factor that damages epithelial cells during infection through the action of reactive oxygen species, however, little is known about its direct effect on biofilms. We demonstrated that pyocyanin-producing P. aeruginosa strains (PA14WT, DKN370, AES-1R, and AES-2) formed robust biofilms in contrast to the poorly formed biofilms of the pyocyanin mutant PA14ΔphzA-G and the low pyocyanin producer AES-1M. Addition of DNase I and reduced glutathione (GSH) significantly reduced biofilm biomass of pyocyanin-producing strains (P < 0.05) compared to non-pyocyanin producers. Subsequently we showed that a combined treatment comprising: GSH + DNase I + antibiotic, disrupted and reduced biofilm biomass up to 90% in cystic fibrosis isolates AES-1R, AES-2, LESB58, and LES431 and promoted lung epithelial cell (A549) recovery and growth. We also showed that exogenously added GSH restored A549 epithelial cell glutathione reductase activity in the presence of pyocyanin through recycling of GSSG to GSH and consequently increased total intracellular GSH levels, inhibiting oxidative stress, and facilitating cell growth and confluence. These outcomes indicate that GSH has multiple roles in facilitating a return to normal epithelial cell growth after insult by pyocyanin. With increased antibiotic resistance in many bacterial species, there is an urgency to establish novel antimicrobial agents. GSH is able to rapidly and comprehensively destroy P. aeruginosa associated biofilms while at a same time assisting in the recovery of host cells and re-growth of damaged tissue.

SELECTION OF CITATIONS
SEARCH DETAIL