Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ArXiv ; 2024 May 08.
Article in English | MEDLINE | ID: mdl-38764594

ABSTRACT

The COVID-19 pandemic led to a large global effort to sequence SARS-CoV-2 genomes from patient samples to track viral evolution and inform public health response. Millions of SARS-CoV-2 genome sequences have been deposited in global public repositories. The Canadian COVID-19 Genomics Network (CanCOGeN - VirusSeq), a consortium tasked with coordinating expanded sequencing of SARS-CoV-2 genomes across Canada early in the pandemic, created the Canadian VirusSeq Data Portal, with associated data pipelines and procedures, to support these efforts. The goal of VirusSeq was to allow open access to Canadian SARS-CoV-2 genomic sequences and enhanced, standardized contextual data that were unavailable in other repositories and that meet FAIR standards (Findable, Accessible, Interoperable and Reusable). In addition, the Portal data submission pipeline contains data quality checking procedures and appropriate acknowledgement of data generators that encourages collaboration. From inception to execution, the portal was developed with a conscientious focus on strong data governance principles and practices. Extensive efforts ensured a commitment to Canadian privacy laws, data security standards, and organizational processes. This Portal has been coupled with other resources like Viral AI and was further leveraged by the Coronavirus Variants Rapid Response Network (CoVaRR-Net) to produce a suite of continually updated analytical tools and notebooks. Here we highlight this Portal, including its contextual data not available elsewhere, and the 'Duotang', a web platform that presents key genomic epidemiology and modeling analyses on circulating and emerging SARS-CoV-2 variants in Canada. Duotang presents dynamic changes in variant composition of SARS-CoV-2 in Canada and by province, estimates variant growth, and displays complementary interactive visualizations, with a text overview of the current situation. The VirusSeq Data Portal and Duotang resources, alongside additional analyses and resources computed from the Portal (COVID-MVP, CoVizu), are all open-source and freely available. Together, they provide an updated picture of SARS-CoV-2 evolution to spur scientific discussions, inform public discourse, and support communication with and within public health authorities. They also serve as a framework for other jurisdictions interested in open, collaborative sequence data sharing and analyses.

2.
bioRxiv ; 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38464143

ABSTRACT

DNA sequencing of tumours to identify somatic mutations has become a critical tool to guide the type of treatment given to cancer patients. The gold standard for mutation calling is comparing sequencing data from the tumour to a matched normal sample to avoid mis-classifying inherited SNPs as mutations. This procedure works extremely well, but in certain situations only a tumour sample is available. While approaches have been developed to find mutations without a matched normal, they have limited accuracy or require specific types of input data (e.g. ultra-deep sequencing). Here we explore the application of single molecule long read sequencing to calling somatic mutations without matched normal samples. We develop a simple theoretical framework to show how haplotype phasing is an important source of information for determining whether a variant is a somatic mutation. We then use simulations to assess the range of experimental parameters (tumour purity, sequencing depth) where this approach is effective. These ideas are developed into a prototype somatic mutation caller, smrest, and its use is demonstrated on two highly mutated cancer cell lines. Finally, we argue that this approach has potential to measure clinically important biomarkers that are based on the genome-wide distribution of mutations: tumour mutation burden and mutation signatures.

SELECTION OF CITATIONS
SEARCH DETAIL