Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Chem Asian J ; : e202400542, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38940412

ABSTRACT

The incorporation of heteroatoms in the chemical structure of organic molecules has been identified as analogous to the doping process adopted in silicon semiconductors to influence the nature of charge carriers. This strategy has been an eye-opener for material chemists in synthesizing new materials for optoelectronic applications. Phenanthro[9,10-a]phenazine-based mesogens have been synthesized via a cyclo-condensation pathway involving triphenylene-based diketones and o-phenyl diamines. The incorporation of phenazine moiety as discussed in this paper, alters the symmetric nature of the triphenylene. The phenanthro[9,10-a]phenazine-based mesogens exhibited hole mobility in the order of 10-4 cm2/Vs as measured by the space-charge limited current (SCLC) technique. The current density in SCLC device increases with increasing temperature which indicates that the charge transport is associated with the thermally activated hopping process. This report attempts to elucidate the self-organization of asymmetric phenanthro[9,10-a] phenazine in the supramolecular liquid crystalline state and their potential for the fabrication of high-temperature optoelectronic devices. However, the low charge carrier mobility can be one of the challenges for device performance.

2.
Small ; : e2400531, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38742980

ABSTRACT

A new generation of an FFP2 (Filtering Face Piece of type 2) smart face mask is achieved by integrating broadband hybrid nanomaterials and a self-assembled optical metasurface. The multifunctional FFP2 face mask shows simultaneously white light-assisted on-demand disinfection properties and versatile biosensing capabilities. These properties are achieved by a powerful combination of white light thermoplasmonic responsive hybrid nanomaterials, which provide excellent photo-thermal disinfection properties, and optical metasurface-based colorimetric biosensors, with a very low limit of pathogens detection. The realized system is studied in optical, morphological, spectroscopic, and cell viability assay experiments and environmental monitoring of harmful pathogens, thus highlighting the extraordinary properties in reusability and pathogens detection of the innovative face mask.

3.
Chem Commun (Camb) ; 60(21): 2922-2925, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38372127

ABSTRACT

π-Conjugated pyrene-thiophene-based room-temperature discotic liquid crystals armed with four peripheral aliphatic chains are reported to study their potential use in a hole-transporting organic semiconductor. The charge carrier mobility studies using the ToF method revealed room temperature hole mobility in the order of 10-4 cm2 V-1 s-1 for both mesogens. However, the mobility values for compound 1a were observed in the order of 10-3 cm2 V-1 s-1 at high temperatures. Such molecular systems can potentially be used in nonlinear organic electronic applications.

4.
Small ; 20(4): e2305701, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37712120

ABSTRACT

With the aim to meet the greatest challenge facing organic batteries, namely the low conductivity of the electrodes, the electrochemical properties of a series of substituted perylene diimides able to form semi-conductive columnar material are investigated. Depending on the substituent group, a strong influence of this group on the reversibility, redox potential but especially on the gravimetric capacity of the electrodes is observed. In the case of substitution by a simple propyl group, the corresponding diimide shows a complete electrochemical activity with only 10% by mass of conductive additive and even shows a half-capacity activity without any additive and without particular electrode engineering. Extensive research has highlighted the intrinsic reactivity of the columnar material but also its perpetual rearrangement during charge/discharge cycles. This study shows that the amount of conductive additive can be significantly reduced by adapting the design of the molecular material and favoring the assembly of redox units in the form of a conductive column.

5.
Chemistry ; 30(5): e202303375, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-37889092

ABSTRACT

A unique gyroid cubic phase has been discovered for a discotic star mesogen with three covalently attached DNA bases. In this cubic I a 3 ‾ d ${Ia\bar{3}d}$ phase, the conjugated core of the mesogens and the thymine pseudo guests self-assemble in mirror image continuous networks, representing a semiconducting material with three-dimensional transport pathways. The hole carrier mobilities are found to be in the typical range of poly(phenylenevinylene) scaffolds. This structure is stabilized by a weak hydrogen bonding between the thymine bases and can be switched to a columnar liquid crystal - thermally and by the addition of complementary adenine guests.

6.
Chem Commun (Camb) ; 59(71): 10652-10655, 2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37581217

ABSTRACT

Four new room-temperature nematic liquid-crystalline (LC) dimers consisting of a wedge-shaped 3,4,5-tridecyloxy gallic ester molecule linked to either cyanobiphenyl, cholesteryl, pentaalkynylbenzene or triphenylene based moieties are reported. Dimers with pentaalkynylbenzene and triphenylene moieties in their room-temperature discotic nematic (ND) mesophase show ambipolar charge carrier mobilities of the order of 10-5 cm2 V-1 s-1 and 10-3 cm2 V-1 s-1, respectively, as measured using a time-of-flight (ToF) technique.

7.
Chemistry ; 29(27): e202300227, 2023 May 11.
Article in English | MEDLINE | ID: mdl-36856078

ABSTRACT

Columnar mesogens constitute a fascinating class of supramolecular nano-architectures owing to the exceptional properties induced by their self-assembling behavior. Extending the π-conjugated core in such systems by incorporating heteroatoms extensively influences their mesomorphic, photophysical properties, etc., presenting them as potential candidates for optoelectronic applications. In the present work, a series of novel nitrogen and oxygen-incorporated chromenonaphthophenanthridine-based elliptical dimers have been synthesized through tandem Pictet-Spengler cyclization followed by ipso-aromatic substitution in one-pot. Mesophase characterization has been carried out by employing POM, DSC, and X-ray diffraction studies. Photophysical properties were investigated using UV-vis and emission spectroscopy. Furthermore, the charge transport properties were analyzed by time-of-flight measurements, and the observed ambipolar mobilities were found to be of the order of 10-3  cm2 V-1 s-1 . The high solubility, excellent thermal stability, self-organizing properties, and ambipolar charge transport characteristics make them promising candidates for applications in organic electronics.

8.
ACS Omega ; 8(2): 2315-2327, 2023 Jan 17.
Article in English | MEDLINE | ID: mdl-36687113

ABSTRACT

A demand for functional materials that are capable of tailoring light-emissive properties has apparently been rising nowadays substantially for their utilization in organic optoelectronic devices. Motivated by such promising characteristics, we present highly emissive as well as aggregation-induced emission (AIE) electroluminescent composite systems composed of a nematic liquid crystals (NLC) blended with polyethylene-functionalized gold nanospheres (GNSs). The major findings of this study include superior electro-optical properties such as threshold voltage reduction by around 24%. The fall time is reduced by 11.50, 30.33, 49.33, and 63.17% respectively, and rotational viscosity is reduced by 13.86, 32.77, 36.97, and 49.58% for 5.0 × 1011, 5.0 × 1012, 2.5 × 1013, and 5.0 × 1013 number of GNS-blended liquid crystal (LC) cells. The increased UV absorbance and greatly enhanced luminescence properties have been attributed to surface plasmon resonance near the surface of GNSs and AIE effect risen due to agglomeration of the capping agent with the NLC molecules respectively, and these characteristics make them suitable for new-age display applications.

9.
Environ Sci Pollut Res Int ; 29(54): 82541-82558, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35751725

ABSTRACT

The ambient environmental parameters have a great bearing on the morphology of living flora and fauna. In this study, we tested this hypothesis on one of the most dominant groups of living unicellular marine microorganism, benthic foraminifera, in the dynamic region of the southeastern Arabian Sea. The living benthic foraminifera from 43 surface samples collected between 25 and 2980 m of water depth were segregated into eight morphogroups (tapered/cylindrical, flattened-ovoid, biconvex, planoconvex, flattened-tapered, spherical, rounded-trochospiral, and rounded-planispiral). We report that the high organic carbon availability is combined with deficiency of oxygen results in benthic foraminifera with low surface area to volume ratio and mostly consists of tapered/cylindrical, flattened-ovoid forms, with a preference for infaunal habitat. However, the tests of the living benthic foraminifera thriving in the oxygen-rich bottom waters have a high surface area to volume ratio, commonly reported as epifaunal, consisting of biconvex and planoconvex forms. Additionally, we also report that the abundance of other morphogroups, namely flattened-tapered, spherical, rounded-trochospiral, and rounded-planispiral, is also controlled by the distinct environmental parameters. We suggest that the living benthic foraminifera are an excellent indicator of the ambient environmental parameters and can be used to reconstruct paleoenvironments.


Subject(s)
Foraminifera , Environmental Monitoring/methods , Oxygen/analysis , Carbon , Water , Geologic Sediments
10.
J Phys Chem B ; 125(36): 10364-10372, 2021 Sep 16.
Article in English | MEDLINE | ID: mdl-34482689

ABSTRACT

A series of novel naphthophenanthridine derivatives are synthesized via N-annulation of hexabutoxytriphenylene-1-amine with various aliphatic aldehydes through the Pictet-Spengler reaction. The synthesized derivatives have been found to self-assemble into a columnar hexagonal mesophase over a wide temperature range, as validated through polarized optical microscopy, differential scanning calorimetry and X-ray diffraction experiments. The photophysical properties of these compounds were studied using UV-visible and emission spectroscopy. The synthesized compounds exhibit ambipolar charge transport, showing temperature-independent electron and hole mobility on the order of 3 × 10-4 cm2/V s, as evaluated by the time-of-flight technique. These novel N-annulated derivatives can be of immense potential toward semiconducting applications of self-assembling supramolecular systems.

11.
J Phys Chem B ; 124(45): 10257-10265, 2020 11 12.
Article in English | MEDLINE | ID: mdl-33136408

ABSTRACT

The high demand and scarcity of luminescent, photoconductive, and transparent gels necessitate its finding as they are potential components in photonic devices such as solar cell concentrators where optical losses via scattering and reabsorption require to be minimized. In this direction, we have reported highly transparent, blue luminescent as well as photoconductive gels exhibiting the hole mobility of 10-3 cm2/V s at ambient temperature as investigated by the time-of-flight technique. The π-driven self-standing supergels were formed using triazole-modified phenylene-vinylene derivatives as gelators in a nonpolar solvent. Different microscopic studies revealed its entangled network of interwoven fibrilar self-assembly and anisotropic order in the gel state. Supramolecular assembly of xerogels, studied by small- and wide-angle X-ray scattering (SAXS/WAXS) suggesting their local columnar hexagonal (Colh) superstructure, is beneficial for conducting gels. Rheological measurements direct the stiffness and robustness of the organogels. In addition, the gelators were developed as a sensing platform for the ultrasensitive detection of Fe(II) ions at ppb level. 1H nuclear magnetic resonance (NMR) titrimetric studies revealed that the interaction of the H-atom of triazole units with Fe(II) is responsible for quenching of blue fluorescence. Also, one of the gelators was successfully applied in bio-imaging using the pollen grains of the Hibiscus rosa-sinensis plant.


Subject(s)
Ferrous Compounds , Luminescence , Gels , Scattering, Small Angle , X-Ray Diffraction
12.
Article in English | MEDLINE | ID: mdl-25215743

ABSTRACT

Multilayer graphene was deposited on indium tin oxide (ITO) -coated glass plates and characterized by suitable techniques. A liquid crystal sample cell was designed using graphene deposited ITO glass plates without any additional treatment for alignment. Ferroelectric liquid crystal (FLC) material was filled in the sample cell. The effect of multilayer graphene on the characteristics of FLC material was investigated. The extremely high relative permittivity of pristine graphene and charge transfer between graphene and FLC material were consequences of the enormous increase in relative permittivity for the graphene-FLC (GFLC) system as compared to pure FLC. The presence of multilayer graphene suppresses the ionic impurities, comprised in the FLC material at lower frequencies. The ionic charge annihilation mechanism might be responsible for the reduction of ionic impurities. The presence of graphene reduces the net ferroelectricity and results in a change in the spontaneous polarization of pure FLC. Rotational viscosity of the GFLC system also decreases due to the strong π-π interaction between the FLC molecule and multilayer graphene. The photoluminescence of the GFLC system is blueshifted as compared to pure FLC, which is due to the coupling of energy released in the process of charge annihilation and photon emission.


Subject(s)
Glass/chemistry , Graphite/chemistry , Liquid Crystals/chemistry , Tin Compounds/chemistry , Electric Conductivity , Luminescence , Microscopy, Electron, Scanning , Optical Imaging , Photons , Rotation , Spectrum Analysis, Raman , Temperature , Viscosity , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...